8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biochar as a sorbent for contaminant management in soil and water: a review.

            Biochar is a stable carbon-rich by-product synthesized through pyrolysis/carbonization of plant- and animal-based biomass. An increasing interest in the beneficial application of biochar has opened up multidisciplinary areas for science and engineering. The potential biochar applications include carbon sequestration, soil fertility improvement, pollution remediation, and agricultural by-product/waste recycling. The key parameters controlling its properties include pyrolysis temperature, residence time, heat transfer rate, and feedstock type. The efficacy of biochar in contaminant management depends on its surface area, pore size distribution and ion-exchange capacity. Physical architecture and molecular composition of biochar could be critical for practical application to soil and water. Relatively high pyrolysis temperatures generally produce biochars that are effective in the sorption of organic contaminants by increasing surface area, microporosity, and hydrophobicity; whereas the biochars obtained at low temperatures are more suitable for removing inorganic/polar organic contaminants by oxygen-containing functional groups, electrostatic attraction, and precipitation. However, due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain. In this review, a succinct overview of current biochar use as a sorbent for contaminant management in soil and water is summarized and discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proline: a multifunctional amino acid.

              Proline accumulates in many plant species in response to environmental stress. Although much is now known about proline metabolism, some aspects of its biological functions are still unclear. Here, we discuss the compartmentalization of proline biosynthesis, accumulation and degradation in the cytosol, chloroplast and mitochondria. We also describe the role of proline in cellular homeostasis, including redox balance and energy status. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death and trigger specific gene expression, which can be essential for plant recovery from stress. Although the regulation and function of proline accumulation are not yet completely understood, the engineering of proline metabolism could lead to new opportunities to improve plant tolerance of environmental stresses. Copyright 2009 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Journal of Environmental Management
                Journal of Environmental Management
                Elsevier BV
                03014797
                July 2020
                July 2020
                : 265
                : 110522
                Article
                10.1016/j.jenvman.2020.110522
                32275244
                d0e4f38d-bbff-48de-a534-42a59656198b
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article