16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutation analysis of Rad18 in human cancer cell lines and non small cell lung cancer tissues

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Genetic instability is known as a cause of oncogenesis. Though Rad18 is reported to function in a post replication mismatch repair system, the relation between the status of Rad18 and human tumorigenesis has not been described so far.

          Methods

          Mutation analysis of 34 human cancer cell lines and 32 non small cell lung cancer (NSCLC) tissues were performed by RT-PCR SSCP. Expression level of Rad18 was measured by real time RT-PCR. Stable transfectant was constructed for in vitro study.

          Results

          No mutation was found in both cancer cell lines and NSCLC tissues. A single nucleotide polymorphism (SNP) at codon 302 was detected in 51.5% of the cell lines and 62.5% of NSCLC tissues. Interestingly, Rad18 was homozygously deleted in a pulmonary adenocarcinoma cell line PC3. Furthermore, there was no difference in the expression level of wild type Rad18 and Rad18 with SNP. The growth, cell morphology, sensitivity to anti-cancer drugs and in vitro DNA repair activity between wild type Rad18 and Rad18 with SNP revealed to have no difference in vitro.

          Conclusion

          Though the frequency of SNP was tended to be higher in NSCLC patients than healthy volunteers (57.7%), as the difference was not significant, we have concluded that there is no relation between Rad18 SNP and lung cancer development.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination.

          The DNA replication machinery stalls at damaged sites on templates, but normally restarts by switching to a specialized DNA polymerase(s) that carries out translesion DNA synthesis (TLS). In human cells, DNA polymerase eta (poleta) accumulates at stalling sites as nuclear foci, and is involved in ultraviolet (UV)-induced TLS. Here we show that poleta does not form nuclear foci in RAD18(-/-) cells after UV irradiation. Both Rad18 and Rad6 are required for poleta focus formation. In wild-type cells, UV irradiation induces relocalization of Rad18 in the nucleus, thereby stimulating colocalization with proliferating cell nuclear antigen (PCNA), and Rad18/Rad6-dependent PCNA monoubiquitination. Purified Rad18 and Rad6B monoubiquitinate PCNA in vitro. Rad18 associates with poleta constitutively through domains on their C-terminal regions, and this complex accumulates at the foci after UV irradiation. Furthermore, poleta interacts preferentially with monoubiquitinated PCNA, but poldelta does not. These results suggest that Rad18 is crucial for recruitment of poleta to the damaged site through protein-protein interaction and PCNA monoubiquitination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells.

            In lower eukaryotes, Rad18 plays a crucial role in postreplication repair. Previously, we isolated a human homologue of RAD18 (hRAD18) and showed that human cells overexpressing hRad18 protein with a mutation in the RING finger motif are defective in postreplication repair. Here, we report the construction of RAD18-knockout mouse embryonic stem cells by gene targeting. These cells had almost the same growth rate as wild-type cells and manifested phenotypes similar to those of human cells expressing mutant Rad18 protein: hypersensitivity to multiple DNA damaging agents and a defect in postreplication repair. Mutation was not induced in the knockout cells with any higher frequencies than in wild-type cells, as shown by ouabain resistance. In the knockout cells, spontaneous sister chromatid exchange (SCE) occurred with twice the frequency observed in normal cells. After mild DNA damage, SCE was threefold higher in the knockout cells, while no increase was observed in normal cells. Stable transformation efficiencies were approximately 20-fold higher in knockout cells, and gene targeting occurred with approximately 40-fold-higher frequency than in wild-type cells at the Oct3/4 locus. These results indicate that dysfunction of Rad18 greatly increases both the frequency of homologous as well as illegitimate recombination, and that RAD18 contributes to maintenance of genomic stability through postreplication repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination

              Switching from a replicative to a translesion polymerase is an important step to further continue on replication at the site of DNA lesion. Recently, RAD18 (a ubiquitin ligase) was shown to monoubiquitinate proliferating cell nuclear antigen (PCNA) in cooperation with RAD6 (a ubiquitin-conjugating enzyme) at the replication-stalled sites, causing the polymerase switch. Analyzing RAD18-knockout (RAD18−/−) cells generated from human HCT116 cells, in addition to the polymerase switch, we found a new function of RAD18 for S phase-specific DNA single-strand break repair (SSBR). Unlike the case with polymerase switching, PCNA monoubiquitination was not necessary for the SSBR. When compared with wild-type HCT116 cells, RAD18−/− cells, defective in the repair of X-ray-induced chromosomal aberrations, were significantly hypersensitive to X-ray-irradiation and also to the topoisomerase I inhibitor camptothecin (CPT) capable of inducing single-strand breaks but were not so sensitive to the topoisomerase II inhibitor etoposide capable of inducing double-strand breaks. However, such hypersensitivity to CPT observed with RAD18−/− cells was limited to only the S phase due to the absence of the RAD18 S phase-specific function. Furthermore, the defective SSBR observed in S phase of RAD18−/− cells was also demonstrated by alkaline comet assay.
                Bookmark

                Author and article information

                Journal
                J Exp Clin Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central
                0392-9078
                1756-9966
                2009
                25 July 2009
                : 28
                : 1
                : 106
                Affiliations
                [1 ]Department of Gatroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
                [2 ]Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
                Article
                1756-9966-28-106
                10.1186/1756-9966-28-106
                2723085
                19630985
                d0f21b66-d56d-4b3f-aad5-926cb81104cb
                Copyright © 2009 Nakamura et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 April 2009
                : 25 July 2009
                Categories
                Review

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article