54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanobiotechnology approaches for engineering smart plant sensors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Crop Production under Drought and Heat Stress: Plant Responses and Management Options

          Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ABA-dependent and ABA-independent signaling in response to osmotic stress in plants.

            Plants have adaptive robustness to osmotic stresses such as drought and high salinity. Numerous genes functioning in stress response and tolerance are induced under osmotic conditions in diverse plants. Various signaling proteins, such as transcription factors, protein kinases and phosphatases, play signal transduction roles during plant adaptation to osmotic stress, with involvement ranging from stress signal perception to stress-responsive gene expression. Recent progress has been made in analyzing the complex cascades of gene expression during osmotic stress response, and especially in identifying specificity and crosstalk in abscisic acid (ABA)-dependent and ABA-independent signaling pathways. In this review, we highlight transcriptional regulation of gene expression governed by two key transcription factors: AREB/ABFs and DREB2A operating respectively in ABA-dependent and ABA-independent signaling pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calcium in plants.

              Calcium is an essential plant nutrient. It is required for various structural roles in the cell wall and membranes, it is a counter-cation for inorganic and organic anions in the vacuole, and the cytosolic Ca2+ concentration ([Ca2+]cyt) is an obligate intracellular messenger coordinating responses to numerous developmental cues and environmental challenges. This article provides an overview of the nutritional requirements of different plants for Ca, and how this impacts on natural flora and the Ca content of crops. It also reviews recent work on (a) the mechanisms of Ca2+ transport across cellular membranes, (b) understanding the origins and specificity of [Ca2+]cyt signals and (c) characterizing the cellular [Ca2+]cyt-sensors (such as calmodulin, calcineurin B-like proteins and calcium-dependent protein kinases) that allow plant cells to respond appropriately to [Ca2+]cyt signals.
                Bookmark

                Author and article information

                Journal
                Nature Nanotechnology
                Nat. Nanotechnol.
                Springer Science and Business Media LLC
                1748-3387
                1748-3395
                June 2019
                June 5 2019
                June 2019
                : 14
                : 6
                : 541-553
                Article
                10.1038/s41565-019-0470-6
                31168083
                d0ff7adc-d005-4b5d-88a5-83b4b6d520ad
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article