0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Renoprotective Effect of Breviscapine through Suppression of Renal Macrophage Recruitment in Streptozotocin-Induced Diabetic Rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Experimental and clinical evidence has consistently demonstrated that renal macrophage infiltration is one of the most important events for the progression of diabetic nephropathy. Breviscapine is a flavonoid extracted from the Chinese herb Erigeron breviscapus. Previously, it was shown that treatment with breviscapine attenuated renal injury in the diabetic rats. The purpose of this study is to investigate whether the renoprotective effect of breviscapine is through suppression of renal macrophage recruitment in diabetic rats. Methods: Diabetes was induced bystreptozotocin injection, and breviscapine was administered orally at a dose of 20 mg/kg/day for 8 weeks. Control rats received vehicle or breviscapine with the same schedule. Results: Breviscapine treatment markedly inhibited both an increase of albuminuria and glomeruli hypertrophy and tubulointerstitial injury without modifying mean arterial blood pressure and creatinine clearance. Levels of malondialdehyde and protein kinase C activities were markedly higher and antioxidant enzyme activities such as superoxide dismutase, catalase as well as glutathione peroxidase were significantly lower in the kidneys of diabetic rats than of the control group, breviscapine administration markedly remitted these changes. ED-1-positive cells and expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) in glomeruli and tubulointerstitium were all markedly elevated but were significantly reduced by breviscapine. Western blot analysis noted that the expression of transforming growth factor β1 protein was increased 1.8-fold in the kidney in diabetic rats, breviscapine treatment could reduce increased expression of TGF-β1 protein by 47%. Conclusion: This study describes a novel mechanism by which breviscapine confers a renoprotective effect.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury.

          Macrophage-mediated renal injury has been implicated in progressive forms of glomerulonephritis; however, a role for macrophages in type 2 diabetic nephropathy, the major cause of end-stage renal failure, has not been established. Therefore, we examined whether macrophages may promote the progression of type 2 diabetic nephropathy in db/db mice. The incidence of renal injury was examined in db/db mice with varying blood sugar and lipid levels at 8 months of age. The association of renal injury with the accumulation of kidney macrophages was analyzed in normal db/+ and diabetic db/db mice at 2, 4, 6, and 8 months of age. In db/db mice, albuminuria and increased plasma creatinine correlated with elevated blood glucose and hemoglobin A1c (HbA1c) levels but not with obesity or hyperlipidemia. Progressive diabetic nephropathy in db/db mice was associated with increased kidney macrophages. Macrophage accumulation and macrophage activation in db/db mice correlated with hyperglycemia, HbA1c levels, albuminuria, elevated plasma creatinine, glomerular and tubular damage, renal fibrosis, and kidney expression of macrophage chemokines [monocyte chemoattractant protein-1 (MCP-1), osteopontin, migration inhibitory factor (MIF), monocyte-colony-stimulating factor (M-CSF)]. The accrual and activation of glomerular macrophages also correlated with increased glomerular IgG and C3 deposition, which was itself dependent on hyperglycemia. Kidney macrophage accumulation is associated with the progression of type 2 diabetic nephropathy in db/db mice. Macrophage accumulation and activation in diabetic db/db kidneys is associated with prolonged hyperglycemia, glomerular immune complex deposition, and increased kidney chemokine production, and raises the possibility of specific therapies for targeting macrophage-mediated injury in diabetic nephropathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes.

             Jun Wada,  Y. Kido,  S. Okada (2003)
            Diabetic nephropathy is a leading cause of end-stage renal failure. Several mechanisms, including activation of protein kinase C, advanced glycation end products, and overexpression of transforming growth factor (TGF)-beta, are believed to be involved in the pathogenesis of diabetic nephropathy. However, the significance of inflammatory processes in the pathogenesis of diabetic microvascular complications is poorly understood. Accumulation of macrophages and overexpression of leukocyte adhesion molecules and chemokines are prominent in diabetic human kidney tissues. We previously demonstrated that intercellular adhesion molecule (ICAM)-1 mediates macrophage infiltration into the diabetic kidney. In the present study, to investigate the role of ICAM-1 in diabetic nephropathy, we induced diabetes in ICAM-1-deficient (ICAM-1(-/-)) mice and ICAM-1(+/+) mice with streptozotocin and examined the renal pathology over a period of 6 months. The infiltration of macrophages was markedly suppressed in diabetic ICAM-1(-/-) mice compared with that of ICAM-1(+/+) mice. Urinary albumin excretion, glomerular hypertrophy, and mesangial matrix expansion were significantly lower in diabetic ICAM-1(-/-) mice than in diabetic ICAM-1(+/+) mice. Moreover, expressions of TGF-beta and type IV collagen in glomeruli were also suppressed in diabetic ICAM-1(-/-) mice. These results suggest that ICAM-1 is critically involved in the pathogenesis of diabetic nephropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats.

              Diabetic glomerulosclerosis is defined by increased glomerular extracellular matrix (ECM) that is mainly synthesized by mesangial cells that underwent an activation mediated by cytokines and growth factors from various cellular origins. In this study, we tested whether macrophages could infiltrate the glomeruli and influence ECM synthesis in experimental diabetes. To test our hypothesis, we initially studied the dynamics of glomerular macrophage recruitment in streptozotocin-induced diabetic rats at days 1, 2, 4, 8, 15, and 30 by using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) on isolated glomeruli and immunohistochemistry and morphometry. We then assessed the role of macrophages on the basis of the pharmacological modulation of their recruitment by insulin or ACE inhibitor treatments and by X-irradiation-induced macrophage depletion at days 8 and 30. Macrophages were recruited within the glomeruli at the very early phase of hyperglycemia by using RT-PCR CD14 detection from day 2 and by using ED1 immunohistochemistry from day 8. This glomerular macrophage infiltration was associated with an increase in alpha1-chain type IV collagen mRNA. In parallel, the diabetic glomeruli became hypertrophic with an increase in the mesangial area. Macrophage recruitment was preceded by or associated with an increased glomerular expression of vascular cell adhesion molecule 1, intracellular adhesion molecule 1, and monocyte chemoattractant protein 1, which contributes to monocyte diapedesis. Glomerular interleukin-1beta mRNA synthesis was also enhanced as early as day 1 and could be involved in the increase in ECM and adhesion molecule gene expressions. Insulin treatment and irradiation-induced macrophage depletion completely prevented the glomerular macrophage recruitment and decreased alpha1-chain type IV collagen mRNA and mesangial area in diabetic rats, whereas ACE inhibitor treatment had an incomplete effect. It can be concluded that in the streptozotocin model, hyperglycemia is followed by an early macrophage recruitment that contributes to the molecular and structural events that could lead to glomerulosclerosis. Therefore, besides direct stimulation of mesangial cells by hyperglycemia, macrophages recruited in the glomeruli during the early phase of hyperglycemia could secondarily act on mesangial cells.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2006
                November 2006
                11 August 2006
                : 104
                : 4
                : e147-e157
                Affiliations
                aDepartment of Nephropathy, The First Affiliated Hospital of AnHui Medical University, and bDepartment of Pathobiology, Hefei, and cDepartment of Nephropathy, Huashan Hospital, FuDan University, Shanghai, PR China
                Article
                94966 Nephron Exp Nephrol 2006;104:e147–e157
                10.1159/000094966
                16902319
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 8, Tables: 4, References: 45, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/94966
                Categories
                Original Paper

                Comments

                Comment on this article