33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leaf morphology in Cowpea [ Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cowpea [ Vigna unguiculata (L.) Walp] exhibits a considerable variation in leaf shape. Although cowpea is mostly utilized as a dry grain and animal fodder crop, cowpea leaves are also used as a high-protein pot herb in many countries of Africa.

          Results

          Leaf morphology was studied in the cowpea RIL population, Sanzi (sub-globose leaf shape) x Vita 7 (hastate leaf shape). A QTL for leaf shape, Hls (hastate leaf shape), was identified on the Sanzi x Vita 7 genetic map spanning from 56.54 cM to 67.54 cM distance on linkage group 15. SNP marker 1_0910 was the most significant over the two experiments, accounting for 74.7% phenotypic variance (LOD 33.82) in a greenhouse experiment and 71.5% phenotypic variance (LOD 30.89) in a field experiment. The corresponding Hls locus was positioned on the cowpea consensus genetic map on linkage group 4, spanning from 25.57 to 35.96 cM. A marker-trait association of the Hls region identified SNP marker 1_0349 alleles co-segregating with either the hastate or sub-globose leaf phenotype. High co-linearity was observed for the syntenic Hls region in Medicago truncatula and Glycine max. One syntenic locus for Hls was identified on Medicago chromosome 7 while syntenic regions for Hls were identified on two soybean chromosomes, 3 and 19. In all three syntenic loci, an ortholog for the EZA1/SWINGER (AT4G02020.1) gene was observed and is the candidate gene for the Hls locus. The Hls locus was identified on the cowpea physical map via SNP markers 1_0910, 1_1013 and 1_0992 which were identified in three BAC contigs; contig926, contig821 and contig25.

          Conclusions

          This study has demonstrated how integrated genomic resources can be utilized for a candidate gene approach. Identification of genes which control leaf morphology may be utilized to improve the quality of cowpea leaves for vegetable and or forage markets as well as contribute to more fundamental research understanding the control of leaf shape in legumes.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27.

          The plant Polycomb-group (Pc-G) protein CURLY LEAF (CLF) is required to repress targets such as AGAMOUS (AG) and SHOOTMERISTEMLESS (STM). Using chromatin immunoprecipitation, we identify AG and STM as direct targets for CLF and show that they carry a characteristic epigenetic signature of dispersed histone H3 lysine 27 trimethylation (H3K27me3) and localised H3K27me2 methylation. H3K27 methylation is present throughout leaf development and consistent with this, CLF is required persistently to silence AG. However, CLF is not itself an epigenetic mark as it is lost during mitosis. We suggest a model in which Pc-G proteins are recruited to localised regions of targets and then mediate dispersed H3K27me3. Analysis of transgenes carrying AG regulatory sequences confirms that H3K27me3 can spread to novel sequences in a CLF-dependent manner and further shows that H3K27me3 methylation is not sufficient for silencing of targets. We suggest that the spread of H3K27me3 contributes to the mitotic heritability of Pc-G silencing, and that the loss of silencing caused by transposon insertions at plant Pc-G targets reflects impaired spreading.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GGT 2.0: versatile software for visualization and analysis of genetic data.

            Ever since its first release in 1999, the free software package for visualization of molecular marker data, graphical genotype (GGT), has been constantly adapted and improved. The GGT package was developed in a plant-breeding context and thus focuses on plant genetic data but was not intended to be limited to plants only. The current version has many options for genetic analysis of populations including diversity analyses and simple association studies. A second release of the GGT package, GGT 2.0 (available through http://www.plantbreeding.wur.nl), is therefore presented in this paper. An overview of existing and new features that are available within GGT 2.0, and a case study in which GGT 2.0 is applied to analyze an existing set of plant genetic data, are presented and discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis.

              We have developed an automated, high-throughput fingerprinting technique for large genomic DNA fragments suitable for the construction of physical maps of large genomes. In the technique described here, BAC DNA is isolated in a 96-well plate format and simultaneously digested with four 6-bp-recognizing restriction endonucleases that generate 3' recessed ends and one 4-bp-recognizing restriction endonuclease that generates a blunt end. Each of the four recessed 3' ends is labeled with a different fluorescent dye, and restriction fragments are sized on a capillary DNA analyzer. The resulting fingerprints are edited with a fingerprint-editing computer program and contigs are assembled with the FPC computer program. The technique was evaluated by repeated fingerprinting of several BACs included as controls in plates during routine fingerprinting of a BAC library and by reconstruction of contigs of rice BAC clones with known positions on rice chromosome 10.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2012
                12 June 2012
                : 13
                : 234
                Affiliations
                [1 ]Department of Botany & Plant Sciences, University of California Riverside, Riverside, CA, USA
                [2 ]Bill & Melinda Gates Foundation, Seattle, WA, USA
                [3 ]International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
                [4 ]Department of Nematology, University of California Riverside, Riverside, CA, USA
                Article
                1471-2164-13-234
                10.1186/1471-2164-13-234
                3431217
                22691139
                d1116504-b3a2-4297-8b57-d5354f4fb0c4
                Copyright ©2012 Pottorff et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 February 2012
                : 29 May 2012
                Categories
                Research Article

                Genetics
                legumes,cowpea,synteny,candidate genes,physical map,eza1/swinger,qtl analysis,genetics,leaf morphology,genomics

                Comments

                Comment on this article