210
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The H19 large intergenic noncoding RNA (lincRNA) is one of the most highly abundant and conserved transcripts in mammalian development, being expressed in both embryonic and extraembryonic cell lineages, yet its physiological function is unknown. Here we show that miR-675, a microRNA (miRNA) embedded within H19’s first exon, is expressed exclusively in the placenta from the gestational time point when placental growth normally ceases, and placentas that lack H19 continue to grow. Overexpression of miR-675 in a range of embryonic and extraembryonic cell lines results in their reduced proliferation; targets of the miRNA are upregulated in the H19 null placenta, including the growth promoting Insulin-like growth factor 1 receptor ( Igf1r). Moreover, the excision of miR-675 from H19 is dynamically regulated by the stress response RNA binding protein HuR. These results suggest that H19’s main physiological role is in limiting growth of the placenta prior to birth, by regulated processing of miR-675. The controlled release of miR-675 from H19 may also allow rapid inhibition of cell proliferation in response to cellular stress or oncogenic signals.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Gene silencing by microRNAs: contributions of translational repression and mRNA decay.

          Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r).

            Newborn mice homozygous for a targeted disruption of insulin-like growth factor gene (Igf-1) exhibit a growth deficiency similar in severity to that previously observed in viable Igf-2 null mutants (60% of normal birthweight). Depending on genetic background, some of the Igf-1(-/-) dwarfs die shortly after birth, while others survive and reach adulthood. In contrast, null mutants for the Igf1r gene die invariably at birth of respiratory failure and exhibit a more severe growth deficiency (45% normal size). In addition to generalized organ hypoplasia in Igf1r(-/-) embryos, including the muscles, and developmental delays in ossification, deviations from normalcy were observed in the central nervous system and epidermis. Igf-1(-/-)/Igf1r(-/-) double mutants did not differ in phenotype from Igf1r(-/-) single mutants, while in Igf-2(-)/Igf1r(-/-) and Igf-1(-/-)/Igf-2(-) double mutants, which are phenotypically identical, the dwarfism was further exacerbated (30% normal size). The roles of the IGFs in mouse embryonic development, as revealed from the phenotypic differences between these mutants, are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of insulin-like growth factors in embryonic and postnatal growth.

              A developmental analysis of growth kinetics in mouse embryos carrying null mutations of the genes encoding insulin-like growth factor I (IGF-I), IGF-II, and the type 1 IGF receptor (IGF1R), alone or in combination, defined the onset of mutational effects leading to growth deficiency and indicated that between embryonic days 11.0 and 12.5, IGF1R serves only the in vivo mitogenic signaling of IGF-II. From E13.5 onward, IGF1R interacts with both IGF-I and IGF-II, while IGF-II recognizes an additional unknown receptor (XR). In contrast with the embryo proper, placental growth is served exclusively by an IGF-II-XR interaction. Additional genetic data suggested that the type 2IGF/mannose 6-phosphate receptor is an unlikely candidate for XR. Postnatal growth curves indicated that surviving Igf-1(-/-) mutants, which are infertile and exhibit delayed bone development, continue to grow with a retarded rate after birth in comparison with wild-type littermates and become 30% of normal weight as adults.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nat. Cell Biol.
                Nature cell biology
                1465-7392
                1476-4679
                14 May 2012
                10 June 2012
                01 January 2013
                : 14
                : 7
                : 659-665
                Affiliations
                [1 ]Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
                [2 ]Proteomics Group, Babraham Institute, Cambridge, CB22 3AT, UK
                [3 ]Genetics and Development Department, Inserm U1016, CNRS UMR 8104, University of Paris Descartes, Institut Cochin, Paris, France
                [4 ]Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
                [5 ]HUDERF-ULB Genetics Center, Universite Libre de Bruxelles, Brussels, Belgium
                [6 ]Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
                Article
                UKMS48289
                10.1038/ncb2521
                3389517
                22684254
                d1181dcb-6963-47d0-a539-da63338763e9

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: Medical Research Council :
                Award ID: G0801156(87767) || MRC_
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article