27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genome-wide analysis of the GRAS gene family in Prunus mume.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prunus mume is an ornamental flower and fruit tree in Rosaceae. We investigated the GRAS gene family to improve the breeding and cultivation of P. mume and other Rosaceae fruit trees. The GRAS gene family encodes transcriptional regulators that have diverse functions in plant growth and development, such as gibberellin and phytochrome A signal transduction, root radial patterning, and axillary meristem formation and gametogenesis in the P. mume genome. Despite the important roles of these genes in plant growth regulation, no findings on the GRAS genes of P. mume have been reported. In this study, we discerned phylogenetic relationships of P. mume GRAS genes, and their locations, structures in the genome and expression levels of different tissues. Out of 46 identified GRAS genes, 45 were located on the 8 P. mume chromosomes. Phylogenetic results showed that these genes could be classified into 11 groups. We found that Group X was P. mume-specific, and three genes of Group IX clustered with the rice-specific gene Os4. We speculated that these genes existed before the divergence of dicotyledons and monocotyledons and were lost in Arabidopsis. Tissue expression analysis indicated that 13 genes showed high expression levels in roots, stems, leaves, flowers and fruits, and were related to plant growth and development. Functional analysis of 24 GRAS genes and an orthologous relationship analysis indicated that many functioned during plant growth and flower and fruit development. Our bioinformatics analysis provides valuable information to improve the economic, agronomic and ecological benefits of P. mume and other Rosaceae fruit trees.

          Related collections

          Author and article information

          Journal
          Mol. Genet. Genomics
          Molecular genetics and genomics : MGG
          1617-4623
          1617-4623
          Feb 2015
          : 290
          : 1
          Affiliations
          [1 ] Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and rural ecological environment, College of Landscape Architecture, Beijing Forestry University, No.35 Qinghua east road, Haidian district, 100083, Beijing, China.
          Article
          10.1007/s00438-014-0918-1
          25245166
          d11c1f5c-f553-44ec-8dc9-87c6bfd3ea2f
          History

          Comments

          Comment on this article