+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional and structural characterization of axonal opioid receptors as targets for analgesia


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in naïve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function.


          Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala 2 , N-MePhe 4 , Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in naïve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using β-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl lead to a recruitment of β-arrestin-2 to the membrane followed by a β-arrestin-2 reappearance in the cytosol and MOP internalization. Pretreatment with hypertonic saline prevented MOP internalization.


          MOPs are present and functional in the axonal membrane from naïve animals. Hypertonic saline acutely decreases ligand-induced internalization of MOP and thereby might improve MOP function. Further studies should explore potential clinical applications of opioids together with enhancers for regional analgesia.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: not found
          • Article: not found

          Ethical guidelines for investigations of experimental pain in conscious animals.

            • Record: found
            • Abstract: found
            • Article: not found

            Molecular control of δ-opioid receptor signalling.

            Opioids represent widely prescribed and abused medications, although their signal transduction mechanisms are not well understood. Here we present the 1.8 Å high-resolution crystal structure of the human δ-opioid receptor (δ-OR), revealing the presence and fundamental role of a sodium ion in mediating allosteric control of receptor functional selectivity and constitutive activity. The distinctive δ-OR sodium ion site architecture is centrally located in a polar interaction network in the seven-transmembrane bundle core, with the sodium ion stabilizing a reduced agonist affinity state, and thereby modulating signal transduction. Site-directed mutagenesis and functional studies reveal that changing the allosteric sodium site residue Asn 131 to an alanine or a valine augments constitutive β-arrestin-mediated signalling. Asp95Ala, Asn310Ala and Asn314Ala mutations transform classical δ-opioid antagonists such as naltrindole into potent β-arrestin-biased agonists. The data establish the molecular basis for allosteric sodium ion control in opioid signalling, revealing that sodium-coordinating residues act as 'efficacy switches' at a prototypic G-protein-coupled receptor.
              • Record: found
              • Abstract: found
              • Article: not found

              Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation

              Two seemingly unrelated experimental treatments inhibit receptor mediated endocytosis: (a) depletion of intracellular K+ (Larkin, J. M., M. S. Brown, J. L. Goldstein, and R. G. W. Anderson. 1983. Cell. 33:273- 285); and (b) treatment with hypertonic media (Daukas, G., and S. H. Zigmond. 1985. J. Cell Biol. 101:1673-1679). Since the former inhibits the formation of clathrin-coated pits (Larkin, J. M., W. D. Donzell, and R. G. W. Anderson, 1986. J. Cell Biol. 103:2619-2627), we were interested in determining whether hypertonic treatment has the same effect, and if so, why. Fibroblasts (human or chicken) were incubated in normal saline made hypertonic with 0.45 M sucrose, then broken open by sonication and freeze-etched to generate replicas of their inner membrane surfaces. Whereas untreated cells display typical geodesic lattices of clathrin under each coated pit, hypertonic cells display in addition a number of empty clathrin "microcages". At first, these appear around the edges of normal coated pit lattices. With further time in hypertonic medium, however, normal lattices largely disappear and are replaced by accumulations of microcages. Concomitantly, low density lipoprotein (LDL) receptors lose their normal clustered distribution and become dispersed all over the cell surface, as seen by fluorescence microscopy and freeze-etch electron microscopy of LDL attached to the cell surface. Upon return to normal medium at 37 degrees C, these changes promptly reverse. Within 2 min, small clusters of LDL reappear on the surfaces of cells and normal clathrin lattices begin to reappear inside; the size and number of these receptor/clathrin complexes returns to normal over the next 10 min. Thus, in spite of their seeming unrelatedness, both K+ depletion and hypertonic treatment cause coated pits to disappear, and both induce abnormal clathrin polymerization into empty microcages. This suggests that in both cases, an abnormal formation of microcages inhibits endocytosis by rendering clathrin unavailable for assembly into normal coated pits.

                Author and article information

                Mol Pain
                Mol Pain
                Molecular Pain
                SAGE Publications (Sage CA: Los Angeles, CA )
                18 February 2016
                : 12
                [1 ]Department of Anesthesiology, University Hospital of Wuerzburg, Germany
                [2 ]Institute of Anatomy and Cell Biology, University of Wuerzburg, Germany
                [3 ]Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Germany
                [4 ]Institute for Pharmacology and Toxicology & Bio-Imaging Center/Rudolf-Virchow Center, University of Wuerzburg, Germany
                [5 ]Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR, Strasbourg Cedex, France
                [6 ]Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
                [7 ]Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
                Author notes
                Heike L Rittner, Department of Anesthesiology, University Hospital of Wuerzburg, Oberdürrbacher Straße 6, D-97080 Würzburg, Germany. Email: rittner_h@ 123456ukw.de
                © The Author(s) 2016

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License ( http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                Original Article
                Custom metadata
                January-December 2016


                Comment on this article