167
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Independent Optical Excitation of Distinct Neural Populations

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optogenetic tools enable the causal examination of how specific cell types contribute to brain circuit functions. A long-standing question is whether it is possible to independently activate two distinct neural populations in mammalian brain tissue. Such a capability would enable the examination of how different synapses or pathways interact to support computation. Here we report two new channelrhodopsins, Chronos and Chrimson, obtained through the de novo sequencing and physiological characterization of opsins from over 100 species of algae. Chrimson is 45 nm red-shifted relative to any previous channelrhodopsin, important for scenarios where red light would be preferred; we show minimal visual system mediated behavioral artifact in optogenetically stimulated Drosophila. Chronos has faster kinetics than any previous channelrhodopsin, yet is effectively more light-sensitive. Together, these two reagents enable crosstalk-free two-color activation of neural spiking and downstream synaptic transmission in independent neural populations in mouse brain slice.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Neocortical excitation/inhibition balance in information processing and social dysfunction.

          Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30-80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps

            The ability to silence the activity of genetically specified neurons in a temporally precise fashion would open up the ability to investigate the causal role of specific cell classes in neural computations, behaviors, and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate very powerful, safe, multiple-color silencing of neural activity. The gene archaerhodopsin-31 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. In addition, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally-relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins2,3 or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans 4 (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue vs. red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of “optogenetic” voltage and ion modulator, which will broadly empower new neuroscientific, biological, neurological, and psychiatric investigations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation

              Channelrhodopsins are used to optogenetically depolarize neurons. We engineered a variant of channelrhodopsin, denoted Re d- a ctivatable Ch annel r hodopsin (ReaChR), that is optimally excited with orange to red light (λ ~ 590 to 630 nm) and offers improved membrane trafficking, higher photocurrents, and faster kinetics compared with existing red-shifted channelrhodopsins. Red light is more weakly scattered by tissue and absorbed less by blood than the blue to green wavelengths required by other channelrhodopsin variants. ReaChR expressed in vibrissa motor cortex was used to drive spiking and vibrissa motion in awake mice when excited with red light through intact skull. Precise vibrissa movements were evoked by expressing ReaChR in the facial motor nucleus in the brainstem and illuminating with red light through the external auditory canal. Thus, ReaChR enables transcranial optical activation of neurons in deep brain structures without the need to surgically thin the skull, form a transcranial window, or implant optical fibers.
                Bookmark

                Author and article information

                Journal
                101215604
                32338
                Nat Methods
                Nat. Methods
                Nature methods
                1548-7091
                1548-7105
                19 February 2014
                09 February 2014
                March 2014
                01 September 2014
                : 11
                : 3
                : 338-346
                Affiliations
                [1 ]The MIT Media Laboratory, Synthetic Neurobiology Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
                [2 ]Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
                [3 ]MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
                [4 ]Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
                [5 ]MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
                [6 ]Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
                [7 ]Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
                [8 ]Beijing Genomics Institute-Shenzhen, Shenzhen, China
                [9 ]Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
                [10 ]Institute of Botany, Cologne Biocenter, University of Cologne, Cologne, Germany
                [11 ]Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
                Author notes
                Correspondence should be addressed to VJ ( vivek@ 123456janelia.hhmi.org ) for Chrimson flies
                Co-corresponding authors, Edward S Boyden esb@ 123456media.mit.edu , Gane KS Wong gane@ 123456ualberta.ca
                Article
                NIHMS555957
                10.1038/nmeth.2836
                3943671
                24509633
                d1215ea9-aefb-4949-9341-672037f1fc4d

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Life sciences
                Life sciences

                Comments

                Comment on this article