6
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Industrial Procedure for Pharmacodynamic Improvement of Metformin HCl via Granulation with Its Paracellular Pathway Enhancer Using Factorial Experimental Design

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sorbitan monostearate is a surfactant used in the food industry. It was proved as a penetration enhancer to metformin HCl via a paracellular pathway. It is solid at room temperature and has a low melting point. Therefore, it was selected, as a granulating agent for metformin HCl.

          Methods

          Multi-level factorial design was applied to determine the optimized formula for industrial processing. The selected formulations were scanned using an electron microscope. Differential scanning calorimetry was used to ascertain the crystalline state of a drug. A modified non-everted sac technique, suggested by the authors, was used to evaluate the in vitro permeation enhancement of the drug. To simulate the emulsification effect of the bile salt, a tween 80 was added to the perfusion solution. As a pharmacodynamic marker, blood glucose levels were measured in diabetic rats.

          Results

          The results showed that drug permeability increases in the presence of tween 80. Drug permeability from granules increased than that of the pure drug or pure drug with tween 80. The prepared granules decreased blood glucose levels of diabetic rats than the pure drug and drug plus tween 80. There was an excellent correlation between the results of the drug permeation percent in vitro and the dropping of blood glucose level percent in vivo.

          Conclusion

          Improving the drug permeation and consequently, the drug pharmacodynamic effect in addition to an excellent micromeritics property of the prepared drug granules showed the dual enhancement effect of the suggested industrial procedure. Therefore, we suggest the same industrial procedure for other class III drugs.

          Graphical Abstract

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0

          Improving the reproducibility of biomedical research is a major challenge. Transparent and accurate reporting is vital to this process; it allows readers to assess the reliability of the findings and repeat or build upon the work of other researchers. The ARRIVE guidelines (Animal Research: Reporting In Vivo Experiments) were developed in 2010 to help authors and journals identify the minimum information necessary to report in publications describing in vivo experiments. Despite widespread endorsement by the scientific community, the impact of ARRIVE on the transparency of reporting in animal research publications has been limited. We have revised the ARRIVE guidelines to update them and facilitate their use in practice. The revised guidelines are published alongside this paper. This explanation and elaboration document was developed as part of the revision. It provides further information about each of the 21 items in ARRIVE 2.0, including the rationale and supporting evidence for their inclusion in the guidelines, elaboration of details to report, and examples of good reporting from the published literature. This document also covers advice and best practice in the design and conduct of animal studies to support researchers in improving standards from the start of the experimental design process through to publication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and 'self-microemulsifying' drug delivery systems.

            'Lipid' formulations for oral administration of drugs generally consist of a drug dissolved in a blend of two or more excipients, which may be triglyceride oils, partial glycerides, surfactants or co-surfactants. The primary mechanism of action which leads to improved bioavailability is usually avoidance, or partial avoidance, of the slow dissolution process which limits the bioavailability of hydrophobic drugs from solid dosage forms. Ideally the formulation allows the drug to remain in a dissolved state throughout its transit through the gastrointestinal tract. The availability of the drug for absorption can be enhanced by presentation of the drug as a solubilizate within a colloidal dispersion. This objective can be achieved by formulation of the drug in a self-emulsifying system or alternatively by taking advantage of the natural process of triglyceride digestion. In practice 'lipid' formulations range from pure oils, at one extreme, to blends which contain a substantial proportion of hydrophilic surfactants or cosolvents. Knowledge of the efficiency of emulsification of these formulations, the nature of the colloidal system formed by dispersion, their susceptibility to digestion, and the subsequent fate of the drug is desirable for formulation. Yet the literature on this subject is limited, so this article represents part review and part commentary on current status of lipid formulations. A simple classification system for lipid formulations, based on the polarity of the blend and reviewed here, will help comparison of data between laboratories. Priorities for future work are discussed. More data is needed on the solubility of drugs in various types of formulations, and in particular, on the relationship between the physical chemistry of the drug and its fate, subsequent to dilution and digestion of the formulation in the lumen of the gastrointestinal tract. The mechanisms of action and practical uses of each type of lipid formulation are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical pharmacokinetics of metformin.

              A J Scheen (1996)
              The biguanide metformin (dimethylbiguanide) is an oral antihyperglycaemic agent widely used in the management of non-insulin-dependent diabetes mellitus (NIDDM). Considerable renewal of interest in this drug has been observed in recent years. Metformin can be determined in biological fluids by various methods, mainly using high performance liquid chromatography, which allows pharmacokinetic studies in healthy volunteers and diabetic patients. Metformin disposition is apparently unaffected by the presence of diabetes and only slightly affected by the use of different oral formulations. Metformin has an absolute oral bioavailability of 40 to 60%, and gastrointestinal absorption is apparently complete within 6 hours of ingestion. An inverse relationship was observed between the dose ingested and the relative absorption with therapeutic doses ranging from 0.5 to 1.5 g, suggesting the involvement of an active, saturable absorption process. Metformin is rapidly distributed following absorption and does not bind to plasma proteins. No metabolites or conjugates of metformin have been identified. The absence of liver metabolism clearly differentiates the pharmacokinetics of metformin from that of other biguanides, such as phenformin. Metformin undergoes renal excretion and has a mean plasma elimination half-life after oral administration of between 4.0 and 8.7 hours. This elimination is prolonged in patients with renal impairment and correlates with creatinine clearance. There are only scarce data on the relationship between plasma metformin concentrations and metabolic effects. Therapeutic levels may be 0.5 to 1.0 mg/L in the fasting state and 1 to 2 mg/L after a meal, but monitoring has little clinical value except when lactic acidosis is suspected or present. Indeed, when lactic acidosis occurs in metformin-treated patients, early determination of the metformin plasma concentration appears to be the best criterion for assessing the involvement of the drug in this acute condition. After confirmation of the diagnosis, treatment should rapidly involve forced diuresis or haemodialysis, both of which favour rapid elimination of the drug. Although serious, lactic acidosis due to metformin is rare and may be minimised by strict adherence to prescribing guidelines and contraindications, particularly the presence of renal failure. Finally, only very few drug interactions have been described with metformin in healthy volunteers. Plasma levels may be reduced by guar gum and alpha-glucosidase inhibitors and increased by cimetidine, but no data are yet available in the diabetic population.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                02 November 2021
                2021
                : 15
                : 4469-4487
                Affiliations
                [1 ]Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University , Tanta, Egypt
                [2 ]Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Omar Al-Mukhtar University , Al-Bayda, Libya
                [3 ]Department of Pharmaceutical Technology, Menoufia University , Shebeen El-Kom, Egypt
                Author notes
                Correspondence: Omar Y Mady Tel +201141819661 Email omer.mady@gmx.at
                Adam A Al-Shoubki Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Omar Al-Mukhtar University , Al-Bayda, Libya Tel +218922826802 Email adim.alsanousi@omu.edu.ly
                Author information
                http://orcid.org/0000-0002-6183-6309
                Article
                328262
                10.2147/DDDT.S328262
                8576103
                d1237cb5-de15-41d4-a0b4-d63ec35434e9
                © 2021 Mady et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 23 July 2021
                : 23 September 2021
                Page count
                Figures: 7, Tables: 19, References: 54, Pages: 19
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                sorbitan monostearate,class iii drugs,factorial design,modified non-everted sac

                Comments

                Comment on this article