4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of rest interval on cardiovascular responses after resistance exercise Translated title: Efeito do intervalo de recuperação nas respostas cardiovasculares pós-exercício de força

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE: To analyze the acute effect of rest interval length on cardiovascular response after resistance exercise. METHODS: Twenty young eutrophic men (23.9 ± 0.7 years;23.8 ± 0.5 kg/m²) performed two experimental sessions in a random order: resistance exercise with a 30-second (I30) and with a 90-second (I90) rest interval between sets. Both sessions included five exercises with 50% of the one-repetition maximum. Before and 24 hours after the experimental sessions, systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), and rate-pressure product (RPP) were obtained. RESULTS: The SBP, DBP and RPP responses were similar between the I30 and I90 sessions (p>0.05), while the HR after I30 was significantly higher than after I90 (p<0.01) for the first hour after exercise. The cardiovascular responses during the first 24 hours were similar between both sessions (p>0.05). CONCLUSION: Different recovery intervals did not promote post-exercise hypotension, however, a short rest interval increases heart rate for 1 hour after exercise. In addition, within 24 hours of the responses were similar between groups.

          Translated abstract

          OBJETIVO: Analisar o efeito agudo do intervalo de recuperação na resposta cardiovascular após o exercício de força. MÉTODOS: Vinte homens jovens eutróficos (23,9 ± 0,7 anos; 23,8 ± 0,5 kg/m²) realizaram duas sessões experimentais em ordem aleatória: exercício de força com 30 segundos (I30) e com 90 segundos (I90) de intervalo de recuperação entre séries. As sessões incluíram cinco exercícios com 50% de uma repetição máxima. Antes e 24 horas após as sessões experimentais, pressão arterial sistólica (PAS), pressão arterial diastólica (PAD), frequência cardíaca (FC) e duplo produto (DP) foram obtidos. RESULTADOS: A resposta da PAS, PAD e DP foi similar entre os grupos (p>0,05), enquanto a FC após a I30 foi significantemente maior que a I90 (p<0,01) na primeira hora pós-exercício. As respostas cardiovasculares durante as 24 horas foram similares entre as sessões (p>0,05). CONCLUSÃO: Diferentes intervalos de recuperação não promoveram hipotensão pós-exercício, entretanto, um curto intervalo de recuperação aumentou a FC por uma hora pós-exercício. Além disso, nas 24 horas seguintes as respostas foram similares entre os grupos.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity.

          The occurrence of post-exercise hypotension after resistance exercise is controversial, and its mechanisms are unknown. To evaluate the effect of different resistance exercise intensities on post-exercise blood pressure (BP), and hemodynamic and autonomic mechanisms, 17 normotensives underwent three experimental sessions: control (C-40 min of rest), low- (E40%-40% of 1 repetition maximum, RM), and high-intensity (E80%-80% of 1 RM) resistance exercises. Before and after interventions, BP, heart rate (HR), and cardiac output (CO) were measured. Autonomic regulation was evaluated by normalized low- (LF(R-R)nu) and high-frequency (HF(R-R)nu) components of the R-R variability. In comparison with pre-exercise, systolic BP decreased similarly in the E40% and E80% (-6 +/- 1 and -8 +/- 1 mmHg, P < 0.05). Diastolic BP decreased in the E40%, increased in the C, and did not change in the E80%. CO decreased similarly in all the sessions (-0.4 +/- 0.2 l/min, P < 0.05), while systemic vascular resistance (SVR) increased in the C, did not change in the E40%, and increased in the E80%. Stroke volume decreased, while HR increased after both exercises, and these changes were greater in the E80% (-11 +/- 2 vs. -17 +/- 2 ml/beat, and +17 +/- 2 vs. +21 +/- 2 bpm, P < 0.05). LF(R-R)nu increased, while ln HF(R-R)nu decreased in both exercise sessions. Low- and high-intensity resistance exercises cause systolic post-exercise hypotension; however, only low-intensity exercise decreases diastolic BP. BP fall is due to CO decrease that is not compensated by SVR increase. BP fall is accompanied by HR increase due to an increase in sympathetic modulation to the heart.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Post-resistance exercise hypotension in spontaneously hypertensive rats is mediated by nitric oxide.

            1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Diretrizes do ACMS para os testes de esforço e sua prescrição

              (2007)
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                motriz
                Motriz: Revista de Educação Física
                Motriz: rev. educ. fis.
                Universidade Estadual Paulista (Rio Claro )
                1980-6574
                June 2013
                : 19
                : 2
                : 252-260
                Affiliations
                [1 ] Universidade de Pernambuco Brazil
                [2 ] Universidade de São Paulo Brazil
                [3 ] Universidade Estadual de Londrina Brazil
                Article
                S1980-65742013000200002
                10.1590/S1980-65742013000200002
                d12876cb-dc3d-457e-b6f7-ebcad8003283

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=1980-6574&lng=en
                Categories
                SPORT SCIENCES

                Sports medicine
                Rest interval,Blood pressure,Strength training,Post-exercise hypotension,Cardiovascular responses,Exercício de força,Hipotensão pós-exercício,Intervalo de recuperação,Pressão arterial,Respostas cardiovasculares

                Comments

                Comment on this article