20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic Regulation by lncRNAs: An Overview Focused on UCA1 in Colorectal Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colorectal cancers have become the second leading cause of cancer-related deaths. In particular, acquired chemoresistance and metastatic lesions occurring in colorectal cancer are a major challenge for chemotherapy treatment. Accumulating evidence shows that long non-coding (lncRNAs) are involved in the initiation, progression, and metastasis of cancer. We here discuss the epigenetic mechanisms through which lncRNAs regulate gene expression in cancer cells. In the second part of this review, we focus on the role of lncRNA Urothelial Cancer Associated 1 (UCA1) to integrate research in different types of cancer in order to decipher its putative function and mechanism of regulation in colorectal cancer cells. UCA1 is highly expressed in cancer cells and mediates transcriptional regulation on an epigenetic level through the interaction with chromatin modifiers, by direct regulation via chromatin looping and/or by sponging the action of a diversity of miRNAs. Furthermore, we discuss the role of UCA1 in the regulation of cell cycle progression and its relation to chemoresistance in colorectal cancer cells.

          Related collections

          Most cited references259

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis

          Validation of multi-gene biomarkers for clinical outcomes is one of the most important issues for cancer prognosis. An important source of information for virtual validation is the high number of available cancer datasets. Nevertheless, assessing the prognostic performance of a gene expression signature along datasets is a difficult task for Biologists and Physicians and also time-consuming for Statisticians and Bioinformaticians. Therefore, to facilitate performance comparisons and validations of survival biomarkers for cancer outcomes, we developed SurvExpress, a cancer-wide gene expression database with clinical outcomes and a web-based tool that provides survival analysis and risk assessment of cancer datasets. The main input of SurvExpress is only the biomarker gene list. We generated a cancer database collecting more than 20,000 samples and 130 datasets with censored clinical information covering tumors over 20 tissues. We implemented a web interface to perform biomarker validation and comparisons in this database, where a multivariate survival analysis can be accomplished in about one minute. We show the utility and simplicity of SurvExpress in two biomarker applications for breast and lung cancer. Compared to other tools, SurvExpress is the largest, most versatile, and quickest free tool available. SurvExpress web can be accessed in http://bioinformatica.mty.itesm.mx/SurvExpress (a tutorial is included). The website was implemented in JSP, JavaScript, MySQL, and R.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC.

            Since their discovery almost two decades ago, microRNAs (miRNAs) have been shown to function by post-transcriptionally regulating protein accumulation. Understanding how miRNAs silence targeted mRNAs has been the focus of intensive research. Multiple models have been proposed, with few mechanistic details having been worked out. However, the past few years have witnessed a quantum leap forward in our understanding of the molecular mechanics of miRNA-mediated gene silencing. In this review we describe recent discoveries, with an emphasis on how miRISC post-transcriptionally controls gene expression by inhibiting translation and/or initiating mRNA decay, and how trans-acting factors control miRNA action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7

              Mounting evidences indicate that circular RNAs (circRNAs) have a vital role in human diseases, especially cancers. More recently, circHIPK3, a particularly abundant circRNA, was proposed to be involved in tumorigenesis. However, its role in colorectal cancer (CRC) has not been explored. In this study, we found circHIPK3 was significantly upregulated in CRC tissues and cell lines, at least in part, due to c-Myb overexpression and positively correlated with metastasis and advanced clinical stage. Moreover, Cox multivariate survival analysis showed that high-level expression of circHIPK3 was an independent prognostic factor of poor overall survival (OS) in CRC (hazard ratio [HR] = 2.75, 95% confidence interval [CI] 1.74–6.51, p = 0.009). Functionally, knockdown of circHIPK3 markedly inhibited CRC cells proliferation, migration, invasion, and induced apoptosis in vitro and suppressed CRC growth and metastasis in vivo. Mechanistically, by using biotinylated-circHIPK3 probe to perform RNA pull-down assay in CRC cells, we identified miR-7 was the only one microRNA that was abundantly pulled down by circHIPK3 in both HCT116 and HT29 cells and these interactions were also confirmed by biotinylated miR-7 pull-down and dual-luciferase reporter assays. Overexpression of miR-7 mimicked the effect of circHIPK3 knockdown on CRC cells proliferation, migration, invasion, and apoptosis. Furthermore, ectopic expression of circHIPK3 effectively reversed miR-7-induced attenuation of malignant phenotypes of CRC cells by increasing the expression levels of miR-7 targeting proto-oncogenes (FAK, IGF1R, EGFR, YY1). Remarkably, the combination of circHIPK3 silencing and miR-7 overexpression gave a better effect on tumor suppression both in vitro and in vivo than did circHIPK3 knockdown or miR-7 overexpression alone. Taken together, our data indicate that circHIPK3 may have considerable potential as a prognostic biomarker in CRC, and support the notion that therapeutic targeting of the c-Myb/circHIPK3/miR-7 axis may be a promising treatment approach for CRC patients.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                14 November 2018
                November 2018
                : 10
                : 11
                : 440
                Affiliations
                Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team “Mucins, Epithelial Differentiation and Carcinogenesis”; University Lille; CHU Lille,59045, Lille CEDEX, France; nicolas.jonckheere@ 123456inserm.fr (N.J.); audrey.vincent@ 123456inserm.fr (A.V.); isabelle.vanseuningen@ 123456inserm.fr (I.V.S.)
                Author notes
                [* ]Correspondence: bernadette.neve@ 123456inserm.fr ; Tel.: +33-320-29-88-64
                Author information
                https://orcid.org/0000-0003-1516-1379
                https://orcid.org/0000-0002-0496-0661
                https://orcid.org/0000-0003-0058-2058
                https://orcid.org/0000-0002-3131-2694
                Article
                cancers-10-00440
                10.3390/cancers10110440
                6266399
                30441811
                d131bb5c-4d77-418b-9819-c1e92dd31cc1
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 October 2018
                : 08 November 2018
                Categories
                Review

                long non-coding rna (lncrna),lncrna urothelial cancer associated 1 (uca1),colorectal cancer (crc),competing endogenous rnas (cerna)

                Comments

                Comment on this article