37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CRISPR-Cas Immunity against Phages: Its Effects on the Evolution and Survival of Bacterial Pathogens

      research-article
      *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction Clustered regularly interspaced short palindromic repeats (CRISPR) loci are arrays of short repeats separated by equally short “spacer” sequences [1]–[3]. Along with the CRISPR-associated (cas) genes, they encode an adaptive immune system of archaea and bacteria that protects the cell against viral infection [4]. Remarkably, this system is capable of inserting a short piece of an infecting viral genome as a spacer in the CRISPR array [4], [5] (Figure 1A). The spacer sequence is transcribed and processed to generate a small antisense RNA (the CRISPR RNA or crRNA) (Figure 1B) [6] that is used as a guide for the recognition and destruction of the invader in subsequent infections (Figure 1C) [7]. Thus, spacer acquisition immunizes the bacterium and its progeny against the virus from which it was taken. Because spacers are incorporated in sequential order, CRISPR loci reflect the history of viral infection of the host. Cas proteins participate in all the different steps of this pathway, namely the insertion of spacer sequences into the CRISPR array [8], [9], the biogenesis of crRNAs [10], [11], and the destruction of the infecting viral genome [12], [13]. 10.1371/journal.ppat.1003765.g001 Figure 1 The CRISPR immunity pathway. CRISPR loci contain clusters of repeats (white boxes) and spacers (colored boxes) that are flanked CRISPR-associated (cas) genes. (A) During adaptation new spacers derived from the genome of the invading virus are incorporated into the CRISPR array by an unknown mechanism. Repeat duplication is also required. (B) During crRNA biogenesis a CRISPR precursor transcript is processed by Cas endoribonucleases within repeat sequences to generate small crRNAs. (C) During targeting the match between the crRNA spacer and target sequences specifies the nucleolytic cleavage of invading mobile genetic elements such as viruses and plasmids. (D) In the CRISPR-Cas system of F. novicida, the tracrRNA (a small RNA mediated in crRNA biogenesis in this system) contains homology to the BLP (bacterial lipoprotein) transcript. The base-pair interaction between the tracrRNA and the BLP mRNA (mediated also by another small RNA, the scaRNA, and the nuclease Cas9) regulates the expression of this immunomodulatory lipoprotein. Distribution of CRISPR-Cas Loci among Bacterial Pathogens In spite of the unique role that CRISPR-Cas loci play in antiviral defense, they are not universal. To date, the CRISPR database [14], a webtool that determines the presence of CRISPR arrays in completed genomes, indicates that 119/141 archaeal (84%) and 1012/2113 bacterial (48%) genomes contain CRISPR loci. In bacteria, there are species in which all strains have CRISPR loci, some in which only some strains have these loci, and species without strains having CRISPR loci. Therefore it is not possible to determine unequivocally that lack of CRISPR in certain strains or species is due to loss of these loci. However, because CRISPR sequences are spread thorough horizontal gene transfer [15], [16] and can be easily lost [17]–[20], it has been hypothesized recently that CRISPR are in a constant state of flux and can appear and disappear depending on the selective forces of the environment [20]. The same type of uneven distribution is found when we look at the presence of CRISPR loci in bacterial pathogens in the CRISPR database (http://crispr.u-psud.fr/crispr/). CRISPR-Cas Systems as a Barrier to Horizontal Gene Transfer While most of the spacers with matches on GenBank target prokaryotic viruses (phages), there is a still an important fraction that match other targets. A recent study looked at all the spacer hits of archaeal CRISPR loci [21] and reported that 40% of them matched phage sequences. The remaining 60% matched other mobile genetic elements such as conjugative plasmids and transposons (22%), CRISPR-Cas loci (18%), and other genes not associated with mobile elements (hypothetical ORFs and housekeeping genes, 20%). Although an equally extensive study has not been performed with bacterial CRISPR spacers, partial analysis suggests a similar distribution [22], [23]. While the presence of antiphage spacers is key for the defense of the cell, the origin and function of these nonphage targeting spacers is obscure. How are these spacers acquired? One possibility is that these sequences are inserted into CRISPR loci during the transfer of foreign genetic material that commonly occurs between prokaryotes, also known as horizontal gene transfer (HGT) [24]. In this scenario, non-antiphage spacers are acquired during bacteriophage transduction, plasmid conjugation, or upon the uptake of foreign DNA during natural transformation. Alternatively, spacer acquisition only occurs as an adaptive response to phage infection and the nonphage targeting spacers are acquired only from phage transducing particles [25]. Regardless of whether the diversity of the CRISPR spacer repertoire is generated by accident or not, the fact that CRISPR loci can target all sorts of genetic material argues that these loci constitute a barrier against the horizontal transfer of genes and accessory genetic elements. Indeed, CRISPR interference has been shown experimentally to prevent the acquisition of conjugative plasmids [26], integrative conjugative elements [27], and environmental DNA by natural transformation [17], [28]. What is even more puzzling is the function, if any, of these nonphage targeting spacers. Plasmid targeting could eliminate the burden of additional replicating elements inside the cell, and the targeting of housekeeping genes could provide a regulatory function for these spacers. However, plasmids, mobile genetic elements, and foreign genes can provide a fitness advantage or even be essential for survival (e.g., antibiotic resistance genes). Implications of CRISPR-Mediated Targeting of Mobile Genetic Elements in Bacterial Pathogens HGT is the major source of genetic diversity for bacterial evolution [24]. In the past century, the introduction of modern antibacterial therapies has accelerated the evolution of pathogens. While it is clear that HGT has played a central role in the spread of virulence factors and antimicrobial resistance genes [29], [30], only a few studies have addressed whether and how CRISPR loci, owing to their potential to regulate HGT, impact the evolution of pathogens. One of these studies investigated the relationship between the CRISPR loci and the prophage content of group A streptococci (GAS, Streptococcus pyogenes), one of the most prevalent human bacterial pathogens. These organisms contain between two to eight prophages, each encoding at least one virulence factor [31]. Bioinformatic analysis revealed that seven of the 13 available GAS genomes contain CRISPR-Cas loci and that there is a mutually exclusive relationship between CRISPR spacer sequences and their prophage targets [32]. This suggests that there is a dynamic relationship between S. pyogenes, its phages, and its CRISPR loci that results in the selection of strains with increased pathogenic adaptations. CRISPR-Cas loci also can impact the spread of antibiotic resistance. Pathogenic staphylococci have acquired resistance to all known antibiotics [33], primarily through the acquisition of conjugative plasmids carrying resistance genes [30]. Staphylococcus epidermidis RP62a is a clinical isolate containing a CRISPR-Cas system with a spacer matching all staphylococcal conjugative plasmids sequenced to date [34]. This spacer provides immunity against the conjugative transfer of these plasmids [26], thereby preventing the acquisition of the antibiotic resistances that they carry. Therefore CRISPR loci could control the dissemination of antibiotic resistance in staphylococci. This does not seem to be the case for Escherichia coli. A study of a collection of 263 natural E. coli isolates from human and animal hosts revealed that CRISPR loci neither match plasmid sequences nor correlate with the presence or absence of plasmids or antibiotic resistance genes [35]. Loss of CRISPR-Cas Loci in Bacterial Pathogens CRISPR immunity against conjugative plasmids would compromise the survival of S. epidermidis RP62a, and other staphylococci carrying similar CRISPR-Cas systems [36], [37] in hospital or other settings where antibiotics are used. A recent study [20] looked for the transfer of the mupirocin-resistant conjugative plasmid pG0400 into S. epidermidis to determine if a CRISPR-Cas system and its target could coexist to prevent this potentially detrimental antiplasmid activity of CRISPR immunity. Immunity against the plasmid was found to decrease the transfer efficiency by about four orders of magnitude but not absolute. Transconjugants that evaded CRISPR attack were analyzed only to find that in all cases they harbored preexisting CRISPR-Cas mutations that allowed plasmid transfer. Loss of CRISPR-Cas loci upon transfer of antibiotic resistant plasmids also seems to occur in enterococci. A screen of 45 strains of Enterococcus faecalis showed a correlation between the presence of CRISPR-Cas loci and antibiotic resistance genes [38]. Finally, another recent study explored the consequences of CRISPR targeting of Streptococcus pneumoniae capsule genes, essential for pneumococcal infection. During infection, natural transformation of capsule genes allows nonencapsulated, avirulent pneumococci to become encapsulated and kill the mice [39]. A CRISPR-Cas targeting a specific capsule gene was engineered into nonencapsulated S. pneumoniae and used to infect mice in the presence of heat-killed encapsulated pneumococci [17]. Horizontal transfer of capsule genes from heat-killed cells into live, nonencapsulated bacteria was prevented by CRISPR immunity, resulting in the survival of mice. The occasional mice that succumbed to pneumococcal infection, however, contained encapsulated bacteria carrying inactivating mutations in the engineered CRISPR locus. These and other results [18], [19] suggest that CRISPR loci and their targets cannot coexist in the same cell. In the case of strong environmental selection of a targeted gene or mobile element, only CRISPR mutants survive. This is a possible explanation for the lack of CRISPR in S. pneumoniae and S. aureus, two notoriously fast-evolving pathogens, but also in other bacteria and archaea that lack this immune system. A Direct Role for CRISPR-Cas Systems in Bacterial Pathogenesis While the reasons for the absence of CRISPR-Cas loci in some fast-evolving pathogens remain a matter of speculation, recent evidence showed that these loci can also promote pathogenesis. A study in Legionella pneumophila showed that cas2, a gene involved in the acquisition of new spacers, is required for the propagation of this pathogen inside amoebae hosts [40], although it is not clear what the function of this gene is during growth. More compelling evidence is found in the intracellular pathogen Francisella novicida. In this bacterium, cas9 is a CRISPR-associated dsDNA nuclease that requires, in addition to the crRNA guide, a tracrRNA (trans-activating crRNA) for cleavage of the invader genome [41], [42]. It was found recently that cas9 is required to repress the production of a bacterial lipoprotein (BLP), a toll-like receptor 2 (TLR2) ligand that induces an innate immune inflammatory response [43]. Repression is independent of the crRNA guides, but requires the tracrRNA and a new small CRISPR-associated RNA (scaRNA) with complementarity to the tracrRNA [44], [45]. The tracrRNA, in turn, contains an ∼85 nt region with partial complementarity to the 3′-end of the BLP messenger, an interaction that leads to the BLP mRNA degradation through an unknown mechanism. This CRISPR-mediated regulation of BLP expression allows F. novicida to evade the host's immune response. A similar mechanism seems to be in place in other pathogens as well: deletion of cas9 in Neisseria meningitidis affected virulence traits such as adherence to and invasion of human epithelial cells [44], and inactivation of cas9 in Campylobacter jejuni resulted in reduced virulence [46]. While the predominance of tracrRNA/scaRNA-mediated regulation remains to be investigated, its existence suggests that CRISPR-Cas loci can be easily converted into regulatory elements that enhance bacterial pathogenesis. Conclusions Clearly CRISPR-Cas systems can both prevent the evolution of pathogenesis, and thus be lost or mutated in bacterial pathogens, but also be co-opted by the pathogen to increase virulence. This will depend of a series of factors: whether other antiphage systems can fulfill the function of the lost CRISPR-Cas system, whether the pathogen relies heavily on HGT for survival, and whether the CRISPR-Cas system can be easily converted into a regulator of gene expression. In the face of the lateral transfer of CRISPR systems, the repression of gene expression by CRISPR provides another level of selection for the maintenance of these systems. While the repression of BLP provides a selectable advantage for Francisella, the accidental repression of essential genes (which could be produced by a fortuitous base-pairing of the tracrRNA and an essential transcript) will select against the lateral transfer of some CRISPR-Cas systems into certain hosts. In the future, the application of DNA sequencing technologies to epidemiological studies will allow us to measure correlations between the flux of CRISPR-Cas loci and the acquisition of antibiotic-resistance plasmids and pathogenicity islands or genes, thus allowing us to measure the effect of CRISPR on the emergence of virulence. On the other hand, the importance of CRISPR for pathogenesis provides a new target for antimicrobials with anti-CRISPR activity. Interestingly, phages already found such anti-CRISPR compounds for us: as part of their arms race with bacteria, phages have developed CRISPR inhibitors [47]. The intersection between CRISPR biology and bacterial pathogenesis is a new and exciting research area that is only beginning to be explored.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.

          Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats

            Background In Archeae and Bacteria, the repeated elements called CRISPRs for "clustered regularly interspaced short palindromic repeats" are believed to participate in the defence against viruses. Short sequences called spacers are stored in-between repeated elements. In the current model, motifs comprising spacers and repeats may target an invading DNA and lead to its degradation through a proposed mechanism similar to RNA interference. Analysis of intra-species polymorphism shows that new motifs (one spacer and one repeated element) are added in a polarised fashion. Although their principal characteristics have been described, a lot remains to be discovered on the way CRISPRs are created and evolve. As new genome sequences become available it appears necessary to develop automated scanning tools to make available CRISPRs related information and to facilitate additional investigations. Description We have produced a program, CRISPRFinder, which identifies CRISPRs and extracts the repeated and unique sequences. Using this software, a database is constructed which is automatically updated monthly from newly released genome sequences. Additional tools were created to allow the alignment of flanking sequences in search for similarities between different loci and to build dictionaries of unique sequences. To date, almost six hundred CRISPRs have been identified in 475 published genomes. Two Archeae out of thirty-seven and about half of Bacteria do not possess a CRISPR. Fine analysis of repeated sequences strongly supports the current view that new motifs are added at one end of the CRISPR adjacent to the putative promoter. Conclusion It is hoped that availability of a public database, regularly updated and which can be queried on the web will help in further dissecting and understanding CRISPR structure and flanking sequences evolution. Subsequent analyses of the intra-species CRISPR polymorphism will be facilitated by CRISPRFinder and the dictionary creator. CRISPRdb is accessible at
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli

              The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas) constitute a recently identified prokaryotic defense mechanism against invading nucleic acids. Activity of the CRISPR/Cas system comprises of three steps: (i) insertion of alien DNA sequences into the CRISPR array to prevent future attacks, in a process called ‘adaptation’, (ii) expression of the relevant proteins, as well as expression and processing of the array, followed by (iii) RNA-mediated interference with the alien nucleic acid. Here we describe a robust assay in Escherichia coli to explore the hitherto least-studied process, adaptation. We identify essential genes and DNA elements in the leader sequence and in the array which are essential for the adaptation step. We also provide mechanistic insights on the insertion of the repeat-spacer unit by showing that the first repeat serves as the template for the newly inserted repeat. Taken together, our results elucidate fundamental steps in the adaptation process of the CRISPR/Cas system.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2013
                December 2013
                12 December 2013
                : 9
                : 12
                : e1003765
                Affiliations
                [1]Laboratory of Bacteriology, The Rockefeller University, New York, New York, United States of America
                Duke University Medical Center, United States of America
                Author notes

                The author has declared that no competing interests exist.

                Article
                PPATHOGENS-D-13-02200
                10.1371/journal.ppat.1003765
                3861508
                24348245
                d1361a60-2923-4fde-97e9-ea13ea6669b4
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Pages: 4
                Funding
                LAM was supported by the Searle Scholars Program ( http://www.searlescholars.net), the Rita Allen Scholars Program ( http://www.ritaallenfoundation.org), an Irma T. Hirschl Award, a Sinsheimer Foundation Award, and a NIH Director's New Innovator Award (1DP2AI104556-01). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Pearls

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article