192
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Azo dyes: past, present and the future

      , ,
      Environmental Reviews
      Canadian Science Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative.

          The control of water pollution has become of increasing importance in recent years. The release of dyes into the environment constitutes only a small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. Tightening government legislation is forcing textile industries to treat their waste effluent to an increasingly high standard. Currently, removal of dyes from effluents is by physio-chemical means. Such methods are often very costly and although the dyes are removed, accumulation of concentrated sludge creates a disposal problem. There is a need to find alternative treatments that are effective in removing dyes from large volumes of effluents and are low in cost, such as biological or combination systems. This article reviews the current available technologies and suggests an effective, cheaper alternative for dye removal and decolourisation applicable on large scale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basic and applied aspects in the microbial degradation of azo dyes.

            Lori Stolz (2001)
            Azo dyes are the most important group of synthetic colorants. They are generally considered as xenobiotic compounds that are very recalcitrant against biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several microorganisms are able, under certain environmental conditions, to transform azo dyes to non-colored products or even to completely mineralize them. Thus, various lignolytic fungi were shown to decolorize azo dyes using ligninases, manganese peroxidases or laccases. For some model dyes, the degradative pathways have been investigated and a true mineralization to carbon dioxide has been shown. The bacterial metabolism of azo dyes is initiated in most cases by a reductive cleavage of the azo bond, which results in the formation of (usually colorless) amines. These reductive processes have been described for some aerobic bacteria, which can grow with (rather simple) azo compounds. These specifically adapted microorganisms synthesize true azoreductases, which reductively cleave the azo group in the presence of molecular oxygen. Much more common is the reductive cleavage of azo dyes under anaerobic conditions. These reactions usually occur with rather low specific activities but are extremely unspecific with regard to the organisms involved and the dyes converted. In these unspecific anaerobic processes, low-molecular weight redox mediators (e.g. flavins or quinones) which are enzymatically reduced by the cells (or chemically by bulk reductants in the environment) are very often involved. These reduced mediator compounds reduce the azo group in a purely chemical reaction. The (sulfonated) amines that are formed in the course of these reactions may be degraded aerobically. Therefore, several (laboratory-scale) continuous anaerobic/aerobic processes for the treatment of wastewaters containing azo dyes have recently been described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial decolourisation and degradation of textile dyes.

              Dyes and dyestuffs find use in a wide range of industries but are of primary importance to textile manufacturing. Wastewater from the textile industry can contain a variety of polluting substances including dyes. Increasingly, environmental legislation is being imposed to control the release of dyes, in particular azo-based compounds, into the environment. The ability of microorganisms to decolourise and metabolise dyes has long been known, and the use of bioremediation based technologies for treating textile wastewater has attracted interest. Within this review, we investigate the mechanisms by which diverse categories of microorganisms, such as the white-rot fungi and anaerobic bacterial consortia, bring about the degradation of dyestuffs.
                Bookmark

                Author and article information

                Journal
                Environmental Reviews
                Environ. Rev.
                Canadian Science Publishing
                1181-8700
                1208-6053
                December 2011
                December 2011
                : 19
                : NA
                : 350-371
                Article
                10.1139/a11-018
                d13db39d-3359-4253-9fd2-cbf49ef3097f
                © 2011

                http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining

                History

                Comments

                Comment on this article