+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-122 negatively associates with peroxiredoxin-II expression in human gefitinib-resistant lung cancer stem cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Previously, we demonstrated that Prx II is important for survival of the gefitinib-resistant A549 (A549/GR) cell line, an NSCLC cell line derived by repeated exposure to gefitinib. Therefore, in this study, we used A549/GR cells to investigate the role of Prx II in GR NSCLC stemness. Initially, to explore the stemness characteristics and investigate the association of Prx II with those stemness characteristics, we successfully isolated a stem cell-like population from A549/GR cells. A549/GR CD133 + cells possessed important cancer stemness characteristics, including the abilities to undergo metastasis, angiogenesis, self-renewal, and to express stemness genes and epithelial–mesenchymal transition (EMT) markers. However, those characteristics were abolished by knocking down Prx II expression. MicroRNA 122 (miR-122) targets Prx II in A549/GR cancer stem cells (CSCs), thereby inhibiting the stemness characteristics in vitro and in vivo. Next, we investigate whether miR-122 overexpression was associated with Prx II expression and Prx-II-induced stemness characteristics, we transfected miR-122 into A549/GR CSCs. MiR-122 inhibited A549/GR stemness by downregulating the Hedgehog, Notch, and Wnt/β-catenin pathways. Taken together, our data suggest that Prx II promotes A549/GR stemness, and that targeting Prx II and miR-122 is a potentially viable strategy for anti-cancer-stem cell therapy in GR NSCLCs.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.

            Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
              • Record: found
              • Abstract: found
              • Article: not found

              Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling.

              The observation that purified yeast glutamine synthetase is rapidly inactivated in a thiol-containing buffer yet retains activity in crude extracts containing the same thiol led to our discovery of an enzyme that protects against oxidation in a thiol-containing system. This novel antioxidant enzyme was shown to reduce hydroperoxides and, more recently, peroxynitrite with the use of electrons provided by a physiological thiol like thioredoxin. It defined a family of proteins, present in organisms from all kingdoms, that was named peroxiredoxin (Prx). All Prx enzymes contain a conserved Cys residue that undergoes a cycle of peroxide-dependent oxidation and thiol-dependent reduction during catalysis. Mammalian cells express six isoforms of Prx (Prx I to VI), which are classified into three subgroups (2-Cys, atypical 2-Cys, and 1-Cys) based on the number and position of Cys residues that participate in catalysis. The relative abundance of Prx enzymes in mammalian cells appears to protect cellular components by removing the low levels of peroxides produced as a result of normal cellular metabolism. During catalysis, the active site cysteine is occasionally overoxidized to cysteine sulfinic acid. Contrary to the general belief that oxidation to the sulfinic state is an irreversible process in cells, studies on the fate of the overoxidized Prx species revealed a mechanism by which the catalytically active thiol form is recovered. This sulfinic reduction is a slow, ATP-dependent process that is specific to 2-Cys Prx isoforms. This reversible overoxidation may represent an adaptation unique to eukaryotic cells that accommodates the intracellular messenger function of H(2)O(2), but experimental validation of such speculation is yet to come.

                Author and article information

                +82 64 754 3331 ,
                +82 64 754 8275 ,
                Cancer Gene Ther
                Cancer Gene Ther
                Cancer Gene Therapy
                Nature Publishing Group US (New York )
                19 October 2018
                19 October 2018
                : 26
                : 9
                : 292-304
                [1 ]ISNI 0000 0001 0725 5207, GRID grid.411277.6, Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, , Jeju National University, ; Jeju, 63243 Republic of Korea
                [2 ]ISNI 0000 0004 0533 4667, GRID grid.267370.7, Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, , University of Ulsan, ; Seoul, 05505 Republic of Korea
                [3 ]ISNI 0000 0004 0636 3099, GRID grid.249967.7, Disease Model Research Laboratory, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), ; Daejeon, 34141 Republic of Korea
                [4 ]ISNI 0000 0001 0725 5207, GRID grid.411277.6, Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, , Jeju National University, ; Jeju, 63243 Republic of Korea
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

                Funded by: FundRef, National Research Foundation of Korea (NRF);
                Award ID: 2017R1D1A1B03028188
                Award Recipient :
                Custom metadata
                © The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

                Oncology & Radiotherapy

                cancer stem cells, non-small-cell lung cancer


                Comment on this article