346
views
1
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cranial Anatomy of Wendiceratops pinhornensis gen. et sp. nov., a Centrosaurine Ceratopsid (Dinosauria: Ornithischia) from the Oldman Formation (Campanian), Alberta, Canada, and the Evolution of Ceratopsid Nasal Ornamentation

      research-article
      1 , 2 , * , 3
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fossil record of ceratopsid dinosaurs between the occurrence of their proximate sister taxa in the Turonian and the beginning of their well-documented radiation from the late Campanian of North America onwards (approximately 90 and 77 Ma) is poor, with only seven taxa described from this early period in their evolution. We describe a new taxon of a highly adorned basal centrosaurine, Wendiceratops pinhornensis gen. et sp. nov., from the lower part of the Oldman Formation (middle Campanian, approximately 78-79 Ma), Alberta, Canada. Over 200 bones derived from virtually all parts of the skeleton, including multiple well-preserved specimens of the diagnostic parietosquamosal frill, were collected from a medium-density monodominant bonebed, making the new taxon one of the best-represented early ceratopsids. The new taxon is apomorphic in having epiparietals at loci 2 and 3 developed as broad-based, pachyostotic processes that are strongly procurved anterodorsally to overhang the posterior and lateral parietal rami, and an ischium with a broad, rectangular distal terminus. Although the morphology of the nasal is incompletely known, Wendiceratops is inferred to have a large, upright nasal horn located close to the orbits, which represents the oldest occurrence of this feature in Ceratopsia. Given the phylogenetic position of the new taxon within Centrosaurinae, a enlarged nasal horn is hypothesized to have arisen independently at least twice in ceratopsid evolution.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Dinosaur Census Reveals Abundant Tyrannosaurus and Rare Ontogenetic Stages in the Upper Cretaceous Hell Creek Formation (Maastrichtian), Montana, USA

          Background A dinosaur census recorded during the Hell Creek Project (1999–2009) incorporates multiple lines of evidence from geography, taphohistory, stratigraphy, phylogeny and ontogeny to investigate the relative abundance of large dinosaurs preserved in the Upper Cretaceous Hell Creek Formation of northeastern Montana, USA. Overall, the dinosaur skeletal assemblages in the Hell Creek Formation (excluding lag-influenced records) consist primarily of subadult or small adult size individuals. Small juveniles and large adults are both extremely rare, whereas subadult individuals are relatively common. We propose that mature individuals of at least some dinosaur taxa either lived in a separate geographic locale analogous to younger individuals inhabiting an upland environment where sedimentation rates were relatively less, or these taxa experienced high mortality before reaching terminal size where late stage and often extreme cranial morphology is expressed. Methodology/Principal Findings Tyrannosaurus skeletons are as abundant as Edmontosaurus, an herbivore, in the upper Hell Creek Formation and nearly twice as common in the lower third of the formation. Smaller, predatory dinosaurs (e.g., Troodon and dromaeosaurids) are primarily represented by teeth found in microvertebrate localities and their skeletons or identifiable lag specimens were conspicuously absent. This relative abundance suggests Tyrannosaurus was not a typical predator and likely benefited from much wider food choice opportunities than exclusively live prey and/or specific taxa. Tyrannosaurus adults may not have competed with Tyrannosaurus juveniles if the potential for selecting carrion increased with size during ontogeny. Conclusions/Significance Triceratops is the most common dinosaur and isolated skulls contribute to a significant portion of this census. Associated specimens of Triceratops consisting of both cranial and postcranial elements remain relatively rare. This rarity may be explained by a historical collecting bias influenced by facies and taphonomic factors. The limited discovery of postcranial elements may also depend on how extensive a fossil quarry is expanded after a skull is collected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada

            Background Herbivore coexistence on the Late Cretaceous island continent of Laramidia has been a topic of great interest, stemming from the paradoxically high diversity and biomass of these animals in relation to the relatively small landmass available to them. Various hypotheses have been advanced to account for these facts, of which niche partitioning is among the most frequently invoked. However, despite its wide acceptance, this hypothesis has not been rigorously tested. This study uses the fossil assemblage from the Dinosaur Park Formation of Alberta as a model to investigate whether niche partitioning facilitated herbivorous dinosaur coexistence on Laramidia. Specifically, the question of feeding height stratification is examined in light of the role it plays in facilitating modern ungulate coexistence. Results Most herbivorous dinosaur species from the Dinosaur Park Formation were restricted to feeding no higher than approximately 1 m above the ground. There is minimal evidence for feeding height partitioning at this level, with ceratopsids capable of feeding slightly higher than ankylosaurs, but the ecological significance of this is ambiguous. Hadrosaurids were uniquely capable of feeding up to 2 m quadrupedally, or up to 5 m bipedally. There is no evidence for either feeding height stratification within any of these clades, or for change in these ecological relationships through the approximately 1.5 Ma record of the Dinosaur Park Formation. Conclusions Although we cannot reject the possibility, we find no good evidence that feeding height stratification, as revealed by reconstructed maximum feeding heights, played an important role in facilitating niche partitioning among the herbivorous dinosaurs of Laramidia. Most browsing pressure was concentrated in the herb layer, although hadrosaurids were capable of reaching shrubs and low-growing trees that were out of reach from ceratopsids, ankylosaurs, and other small herbivores, effectively dividing the herbivores in terms of relative abundance. Sympatric hadrosaurids may have avoided competing with one another by feeding differentially using bipedal and quadrupedal postures. These ecological relationships evidently proved to be evolutionarily stable because they characterize the herbivore assemblage of the Dinosaur Park Formation through time. If niche partitioning served to facilitate the rich diversity of these animals, it may have been achieved by other means in addition to feeding height stratification. Consideration of other feeding height proxies, including dental microwear and skull morphology, may help to alleviate problems of underdetermination identified here.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Skull Ecomorphology of Megaherbivorous Dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada

              Megaherbivorous dinosaur coexistence on the Late Cretaceous island continent of Laramidia has long puzzled researchers, owing to the mystery of how so many large herbivores (6–8 sympatric species, in many instances) could coexist on such a small (4–7 million km2) landmass. Various explanations have been put forth, one of which–dietary niche partitioning–forms the focus of this study. Here, we apply traditional morphometric methods to the skulls of megaherbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta to infer the ecomorphology of these animals and to test the niche partitioning hypothesis. We find evidence for niche partitioning not only among contemporaneous ankylosaurs, ceratopsids, and hadrosaurids, but also within these clades at the family and subfamily levels. Consubfamilial ceratopsids and hadrosaurids differ insignificantly in their inferred ecomorphologies, which may explain why they rarely overlap stratigraphically: interspecific competition prevented their coexistence.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 July 2015
                2015
                : 10
                : 7
                : e0130007
                Affiliations
                [1 ]Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, M5S 2C6 Canada
                [2 ]Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2 Canada
                [3 ]Department of Vertebrate Paleontology, Cleveland Museum of Natural History, 1 Wade Oval Drive, University Circle, Cleveland, Ohio 44106, United States of America
                University of Pennsylvania, UNITED STATES
                Author notes

                Competing Interests: DCE is currently serving on the editorial board of PLOS ONE as an Academic Editor. MJR has no competing interests. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: DCE MJR. Performed the experiments: DCE MJR. Analyzed the data: DCE MJR. Contributed reagents/materials/analysis tools: DCE MJR. Wrote the paper: DCE MJR.

                Article
                PONE-D-15-03111
                10.1371/journal.pone.0130007
                4496092
                26154293
                d13fc36b-89f7-44ad-a4da-261cd2dfbfab
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 21 January 2015
                : 14 May 2015
                Page count
                Figures: 16, Tables: 0, Pages: 31
                Funding
                This research was supported by a Natural Sciences and Engineering Research Council of Canada ( http://www.nserc-crsng.gc.ca/index_eng.asp) Discovery Grant to DCE (NSERC Grant File Number: RGPIN 355845, http://www.nserc-crsng.gc.ca/ase-oro/Details-Detailles_eng.asp?id=527922), Royal Ontario Museum Department of Natural History Fieldwork Grants to DCE, and research grants from the Dinosaur Research Institute to DCE and MJR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article