117
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic Characterization of Fasciola Isolates from West Azerbaijan Province Iran Based on ITS1 and ITS2 Sequence of Ribosomal DNA

      research-article

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Fascioliasis, caused by Fasciola hepatica and F. gigantica, has medical and economic importance in the world. Molecular approaches comparing traditional methods using for identification and characterization of Fasciola spp. are precise and reliable. The aims of current study were molecular characterization of Fasciola spp. in West Azerbaijan Province, Iran and then comparative analysis of them using GenBank sequences.

          Methods:

          A total number of 580 isolates were collected from different hosts in five cities of West Azerbaijan Province, in 2014 from 90 slaughtered cattle (n=50) and sheep (n=40). After morphological identification and DNA extraction, designing specific primer were used to amplification of ITS1, 5.8s and ITS2 regions, 50 samples were conducted to sequence, randomly.

          Result:

          Using morphometric characters 99.14% and 0.86% of isolates identified as F. hepatica and F. gigantica, respectively. PCR amplification of 1081 bp fragment and sequencing result showed 100% similarity with F. hepatica in ITS1 (428 bp), 5.8s (158 bp), and ITS2 (366 bp) regions. Sequence comparison among current study sequences and GenBank data showed 98% identity with 11 nucleotide mismatches. However, in phylogenetic tree F. hepatica sequences of West Azerbaijan Province, Iran, were in a close relationship with Iranian, Asian, and African isolates.

          Conclusions:

          Only F. hepatica species is distributed among sheep and cattle in West Azerbaijan Province Iran. However, 5 and 6 bp variation in ITS1 and ITS2 regions, respectively, is not enough to separate of Fasciola spp. Therefore, more studies are essential for designing new molecular markers to correct species identification.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Fascioliasis and other plant-borne trematode zoonoses.

          Fascioliasis and other food-borne trematodiases are included in the list of important helminthiases with a great impact on human development. Six plant-borne trematode species have been found to affect humans: Fasciola hepatica, Fasciola gigantica and Fasciolopsis buski (Fasciolidae), Gastrodiscoides hominis (Gastrodiscidae), Watsonius watsoni and Fischoederius elongatus (Paramphistomidae). Whereas F. hepatica and F. gigantica are hepatic, the other four species are intestinal parasites. The fasciolids and the gastrodiscid cause important zoonoses distributed throughout many countries, while W. watsoni and F. elongatus have been only accidentally detected in humans. Present climate and global changes appear to increasingly affect snail-borne helminthiases, which are strongly dependent on environmental factors. Fascioliasis is a good example of an emerging/re-emerging parasitic disease in many countries as a consequence of many phenomena related to environmental changes as well as man-made modifications. The ability of F. hepatica to spread is related to its capacity to colonise and adapt to new hosts and environments, even at the extreme inhospitality of very high altitude. Moreover, the spread of F. hepatica from its original European range to other continents is related to the geographic expansion of its original European lymnaeid intermediate host species Galba truncatula, the American species Pseudosuccinea columella, and its adaptation to other lymnaeid species authochthonous in the newly colonised areas. Although fasciolopsiasis and gastrodiscoidiasis can be controlled along with other food-borne parasitoses, fasciolopsiasis still remains a public health problem in many endemic areas despite sustained WHO control programmes. Fasciolopsiasis has become a re-emerging infection in recent years and gastrodiscoidiasis, initially supposed to be restricted to Asian countries, is now being reported in African countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chapter 2. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control.

            Fascioliasis, caused by liver fluke species of the genus Fasciola, has always been well recognized because of its high veterinary impact but it has been among the most neglected diseases for decades with regard to human infection. However, the increasing importance of human fascioliasis worldwide has re-launched interest in fascioliasis. From the 1990s, many new concepts have been developed regarding human fascioliasis and these have furnished a new baseline for the human disease that is very different to a simple extrapolation from fascioliasis in livestock. Studies have shown that human fascioliasis presents marked heterogeneity, including different epidemiological situations and transmission patterns in different endemic areas. This heterogeneity, added to the present emergence/re-emergence of the disease both in humans and animals in many regions, confirms a worrying global scenario. The huge negative impact of fascioliasis on human communities demands rapid action. When analyzing how better to define control measures for endemic areas differing at such a level, it would be useful to have genetic markers that could distinguish each type of transmission pattern and epidemiological situation. Accordingly, this chapter covers aspects of aetiology, geographical distribution, epidemiology, transmission and control in order to obtain a solid baseline for the interpretation of future results. The origins and geographical spread of F. hepatica and F. gigantica in both the ruminant pre-domestication times and the livestock post-domestication period are analyzed. Paleontological, archaeological and historical records, as well as genetic data on recent dispersal of livestock species, are taken into account to establish an evolutionary framework for the two fasciolids across all continents. Emphasis is given to the distributional overlap of both species and the roles of transportation, transhumance and trade in the different overlap situations. Areas with only one Fasciola spp. are distinguished from local and zonal overlaps in areas where both fasciolids co-exist. Genetic techniques applied to liver flukes in recent years that are useful to elucidate the genetic characteristics of the two fasciolids are reviewed. The intra-specific and inter-specific variabilities of 'pure'F. hepatica and 'pure'F. gigantica were ascertained by means of complete sequences of ribosomal deoxyribonucleic acid (rDNA) internal transcribed spacer (ITS)-2 and ITS-1 and mitochondrial deoxyribonucleic acid (mtDNA) cox1 and nad1 from areas with only one fasciolid species. Fasciolid sequences of the same markers scattered in the literature are reviewed. The definitive haplotypes established appear to fit the proposed global evolutionary scenario. Problems posed by fasciolid cross-breeding, introgression and hybridization in overlap areas are analyzed. Nuclear rDNA appears to correlate with adult fluke characteristics and fasciolid/lymnaeid specificity, whereas mtDNA does not. However, flukes sometimes appear so intermediate that they cannot be ascribed to either F. hepatica-like or F. gigantica-like forms and snail specificity may be opposite to the one deduced from the adult morphotype. The phenotypic characteristics of adults and eggs of 'pure'F. hepatica and F. gigantica, as well as of intermediate forms in overlap areas, are compared, with emphasis on the definitive host influence on egg size in humans. Knowledge is sufficient to support F. hepatica and F. gigantica as two valid species, which recently diverged by adaptation to different pecoran and lymnaeid hosts in areas with differing environmental characteristics. Their phenotypic differences and ancient pre-domestication origins involve a broad geographical area that largely exceeds the typical, more local scenarios known for sub-species units. Phenomena such as abnormal ploidy and aspermic parthenogenesis in hybrids suggest that their separate evolution in pre-domestication times allowed them to achieve almost total genetic isolation. Recent sequencing results suggest that present assumptions on fasciolid-lymnaeid specificity might be wrong. The crucial role of lymnaeids in fascioliasis transmission, epidemiology and control was the reason for launching a worldwide lymnaeid molecular characterization initiative. This initiative has already furnished useful results on several continents. A standardized methodology for fasciolids and lymnaeids is proposed herein in order that future work is undertaken on a comparable basis. A complete understanding of molecular epidemiology is expected to help greatly in designing global actions and local interventions for control of fascioliasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The ITS2 Database III—sequences and structures for phylogeny

              The internal transcribed spacer 2 (ITS2) is a widely used phylogenetic marker. In the past, it has mainly been used for species level classifications. Nowadays, a wider applicability becomes apparent. Here, the conserved structure of the RNA molecule plays a vital role. We have developed the ITS2 Database (http://its2.bioapps.biozentrum.uni-wuerzburg.de) which holds information about sequence, structure and taxonomic classification of all ITS2 in GenBank. In the new version, we use Hidden Markov models (HMMs) for the identification and delineation of the ITS2 resulting in a major redesign of the annotation pipeline. This allowed the identification of more than 160 000 correct full length and more than 50 000 partial structures. In the web interface, these can now be searched with a modified BLAST considering both sequence and structure, enabling rapid taxon sampling. Novel sequences can be annotated using the HMM based approach and modelled according to multiple template structures. Sequences can be searched for known and newly identified motifs. Together, the database and the web server build an exhaustive resource for ITS2 based phylogenetic analyses.
                Bookmark

                Author and article information

                Journal
                Iran J Parasitol
                Iran J Parasitol
                IJPA
                IJPA
                Iranian Journal of Parasitology
                Tehran University of Medical Sciences
                1735-7020
                2008-238X
                Jan-Mar 2016
                : 11
                : 1
                : 52-64
                Affiliations
                [1. ]Department of Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
                [2. ]Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
                [3. ]Medical Entomology Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
                [4. ]Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
                Author notes
                [* ] Correspondence Email: hazrati_tappeh@ 123456yahoo.co.nz
                Article
                ijpa-52
                4835470
                27095969
                d14ed5d9-dc43-4e5b-b634-d17a9133dae4
                Copyright© Iranian Society of Parasitology & Tehran University of Medical Sciences

                This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

                History
                : 04 July 2015
                : 21 November 2015
                Categories
                Original Article

                Parasitology
                fasciola hepatica,its1,its2,west azerbaijan,iran
                Parasitology
                fasciola hepatica, its1, its2, west azerbaijan, iran

                Comments

                Comment on this article