36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathogenesis of Target Organ Damage in Hypertension: Role of Mitochondrial Oxidative Stress

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypertension causes target organ damage (TOD) that involves vasculature, heart, brain and kidneys. Complex biochemical, hormonal and hemodynamic mechanisms are involved in the pathogenesis of TOD. Common to all these processes is an increased bioavailability of reactive oxygen species (ROS). Both in vitro and in vivo studies explored the role of mitochondrial oxidative stress as a mechanism involved in the pathogenesis of TOD in hypertension, especially focusing on atherosclerosis, heart disease, renal failure, cerebrovascular disease. Both dysfunction of mitochondrial proteins, such as uncoupling protein-2 (UCP2), superoxide dismutase (SOD) 2, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), calcium channels, and the interaction between mitochondria and other sources of ROS, such as NADPH oxidase, play an important role in the development of endothelial dysfunction, cardiac hypertrophy, renal and cerebral damage in hypertension. Commonly used anti-hypertensive drugs have shown protective effects against mitochondrial-dependent oxidative stress. Notably, few mitochondrial proteins can be considered therapeutic targets on their own. In fact, antioxidant therapies specifically targeted at mitochondria represent promising strategies to reduce mitochondrial dysfunction and related hypertensive TOD. In the present article, we discuss the role of mitochondrial oxidative stress as a contributing factor to hypertensive TOD development. We also provide an overview of mitochondria-based treatment strategies that may reveal useful to prevent TOD and reduce its progression.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies.

          Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure. 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.

            NAD(P)H oxidases (Noxs) produce O(2)(-) and play an important role in cardiovascular pathophysiology. The Nox4 isoform is expressed primarily in the mitochondria in cardiac myocytes. To elucidate the function of endogenous Nox4 in the heart, we generated cardiac-specific Nox4(-/-) (c-Nox4(-/-)) mice. Nox4 expression was inhibited in c-Nox4(-/-) mice in a heart-specific manner, and there was no compensatory up-regulation in other Nox enzymes. These mice exhibited reduced levels of O(2)(-) in the heart, indicating that Nox4 is a significant source of O(2)(-) in cardiac myocytes. The baseline cardiac phenotype was normal in young c-Nox4(-/-) mice. In response to pressure overload (PO), however, increases in Nox4 expression and O(2)(-) production in mitochondria were abolished in c-Nox4(-/-) mice, and c-Nox4(-/-) mice exhibited significantly attenuated cardiac hypertrophy, interstitial fibrosis and apoptosis, and better cardiac function compared with WT mice. Mitochondrial swelling, cytochrome c release, and decreases in both mitochondrial DNA and aconitase activity in response to PO were attenuated in c-Nox4(-/-) mice. On the other hand, overexpression of Nox4 in mouse hearts exacerbated cardiac dysfunction, fibrosis, and apoptosis in response to PO. These results suggest that Nox4 in cardiac myocytes is a major source of mitochondrial oxidative stress, thereby mediating mitochondrial and cardiac dysfunction during PO.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial.

              Basic research and observational studies suggest vitamin E or vitamin C may reduce the risk of cardiovascular disease. However, few long-term trials have evaluated men at initially low risk of cardiovascular disease, and no previous trial in men has examined vitamin C alone in the prevention of cardiovascular disease. To evaluate whether long-term vitamin E or vitamin C supplementation decreases the risk of major cardiovascular events among men. The Physicians' Health Study II was a randomized, double-blind, placebo-controlled factorial trial of vitamin E and vitamin C that began in 1997 and continued until its scheduled completion on August 31, 2007. There were 14,641 US male physicians enrolled, who were initially aged 50 years or older, including 754 men (5.1%) with prevalent cardiovascular disease at randomization. Individual supplements of 400 IU of vitamin E every other day and 500 mg of vitamin C daily. A composite end point of major cardiovascular events (nonfatal myocardial infarction, nonfatal stroke, and cardiovascular disease death). During a mean follow-up of 8 years, there were 1245 confirmed major cardiovascular events. Compared with placebo, vitamin E had no effect on the incidence of major cardiovascular events (both active and placebo vitamin E groups, 10.9 events per 1000 person-years; hazard ratio [HR], 1.01 [95% confidence interval {CI}, 0.90-1.13]; P = .86), as well as total myocardial infarction (HR, 0.90 [95% CI, 0.75-1.07]; P = .22), total stroke (HR, 1.07 [95% CI, 0.89-1.29]; P = .45), and cardiovascular mortality (HR, 1.07 [95% CI, 0.90-1.28]; P = .43). There also was no significant effect of vitamin C on major cardiovascular events (active and placebo vitamin E groups, 10.8 and 10.9 events per 1000 person-years, respectively; HR, 0.99 [95% CI, 0.89-1.11]; P = .91), as well as total myocardial infarction (HR, 1.04 [95% CI, 0.87-1.24]; P = .65), total stroke (HR, 0.89 [95% CI, 0.74-1.07]; P = .21), and cardiovascular mortality (HR, 1.02 [95% CI, 0.85-1.21]; P = .86). Neither vitamin E (HR, 1.07 [95% CI, 0.97-1.18]; P = .15) nor vitamin C (HR, 1.07 [95% CI, 0.97-1.18]; P = .16) had a significant effect on total mortality but vitamin E was associated with an increased risk of hemorrhagic stroke (HR, 1.74 [95% CI, 1.04-2.91]; P = .04). In this large, long-term trial of male physicians, neither vitamin E nor vitamin C supplementation reduced the risk of major cardiovascular events. These data provide no support for the use of these supplements for the prevention of cardiovascular disease in middle-aged and older men. clinicaltrials.gov Identifier: NCT00270647.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                31 December 2014
                January 2015
                : 16
                : 1
                : 823-839
                Affiliations
                [1 ]Department of Clinical and Molecular Medicine, School of Medicine and Psychology, University Sapienza of Rome, Ospedale S. Andrea, Rome 00189, Italy; E-Mails: beniamino.pagliaro@ 123456libero.it (B.P.); giorgia.pierelli@ 123456alice.it (G.P.); caterina.santolamazza@ 123456gmail.com (C.S.); silvia.mennuni@ 123456gmail.com (S.M.); massimo.volpe@ 123456uniroma1.it (M.V.)
                [2 ]Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli 86077, Italy; E-Mail: saradicastro@ 123456yahoo.it
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: rubattu.speranza@ 123456neuromed.it ; Tel.: +39-06-3377-5979; Fax: +39-06-3377-5061.
                Article
                ijms-16-00823
                10.3390/ijms16010823
                4307277
                25561233
                d14f09c3-e14e-4ba8-81c7-fb536cd9234a
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 November 2014
                : 26 December 2014
                Categories
                Review

                Molecular biology
                target organ damage,hypertension,mitochondrial dysfunction,oxidative stress
                Molecular biology
                target organ damage, hypertension, mitochondrial dysfunction, oxidative stress

                Comments

                Comment on this article