23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Various Weather Conditions as a Potential Ischemic Stroke Trigger in Dogs

      research-article
      1 , * , 2
      Veterinary Sciences
      MDPI
      canine, ischemic stroke, stroke trigger, weather

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stroke is the fifth leading cause of death in the United States, and is the leading cause of serious, long-term disability worldwide. There are at least 795,000 new or recurrent strokes each year, and approximately 85% of all stroke occurrences are ischemic. Unfortunately, companion animals are also at risk for ischemic stroke. Although the exact incidence of ischemic stroke in companion animals is unknown, some studies, and the veterinary information network (VIN), report that approximately 3% of neurological case referrals are due to a stroke. There is a long list of predisposing factors associated with the risk of ischemic stroke in both humans and canines; however, these factors do not explain why a stroke happens at a particular time on a particular day. Our understanding of these potential stroke “triggers” is limited, and the effect of transient environmental exposures may be one such “trigger”. The present study investigated the extent to which the natural occurrence of canine ischemic stroke was related to the weather conditions in the time-period immediately preceding the onset of stroke. The results of the present study demonstrated that the change in weather conditions could be a potential stroke trigger, with the strokes evaluated occurring after periods of rapid, large fluctuations in weather conditions. There are currently no epidemiological data on the seasonal variability of ischemic stroke in dogs, and determining whether canine stroke parallels human stroke would further validate the use of companion dogs as an appropriate naturally occurring model.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: not found
          • Article: not found

          Scientific method: statistical errors.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia.

            Ischemic stroke is a devastating disease with a complex pathophysiology. Animal modeling of ischemic stroke serves as an indispensable tool first to investigate mechanisms of ischemic cerebral injury, secondly to develop novel antiischemic regimens. Most of the stroke models are carried on rodents. Each model has its particular strengths and weaknesses. Mimicking all aspects of human stroke in one animal model is not possible since ischemic stroke is itself a very heterogeneous disorder. Experimental ischemic stroke models contribute to our understanding of the events occurring in ischemic and reperfused brain. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. Trials aimed to evaluate effectiveness of recombinant tissue-type plasminogen activator in longer time windows with finer selection of patients based on magnetic resonance imaging tools and trials of novel recanalization methods are ongoing. Despite the failure of most neuroprotective drugs during the last two decades, there are good chances to soon have effective neuroprotectives with the help of improved preclinical testing and clinical trial design. In this article, we focus on various rodent animal models, pathogenic mechanisms, and promising therapeutic approaches of ischemic stroke.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis.

              Canine degenerative myelopathy (DM) is a fatal neurodegenerative disease prevalent in several dog breeds. Typically, the initial progressive upper motor neuron spastic and general proprioceptive ataxia in the pelvic limbs occurs at 8 years of age or older. If euthanasia is delayed, the clinical signs will ascend, causing flaccid tetraparesis and other lower motor neuron signs. DNA samples from 38 DM-affected Pembroke Welsh corgi cases and 17 related clinically normal controls were used for genome-wide association mapping, which produced the strongest associations with markers on CFA31 in a region containing the canine SOD1 gene. SOD1 was considered a regional candidate gene because mutations in human SOD1 can cause amyotrophic lateral sclerosis (ALS), an adult-onset fatal paralytic neurodegenerative disease with both upper and lower motor neuron involvement. The resequencing of SOD1 in normal and affected dogs revealed a G to A transition, resulting in an E40K missense mutation. Homozygosity for the A allele was associated with DM in 5 dog breeds: Pembroke Welsh corgi, Boxer, Rhodesian ridgeback, German Shepherd dog, and Chesapeake Bay retriever. Microscopic examination of spinal cords from affected dogs revealed myelin and axon loss affecting the lateral white matter and neuronal cytoplasmic inclusions that bind anti-superoxide dismutase 1 antibodies. These inclusions are similar to those seen in spinal cord sections from ALS patients with SOD1 mutations. Our findings identify canine DM to be the first recognized spontaneously occurring animal model for ALS.
                Bookmark

                Author and article information

                Journal
                Vet Sci
                Vet Sci
                vetsci
                Veterinary Sciences
                MDPI
                2306-7381
                16 November 2017
                December 2017
                : 4
                : 4
                : 56
                Affiliations
                [1 ]Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., Grafton, MA 01536, USA
                [2 ]Massachusetts Veterinary Referral Hospital, 20 Cabot Rd., Woburn, MA 01801, USA; gsilver@ 123456ethosvet.com
                Author notes
                [* ]Correspondence: Kristy.Meadows@ 123456tufts.edu ; Tel.: +1-508-839-7956
                Author information
                https://orcid.org/0000-0001-7737-9598
                Article
                vetsci-04-00056
                10.3390/vetsci4040056
                5753636
                29144407
                d15066c6-5f8e-467b-b91e-358086fd3841
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 September 2017
                : 14 November 2017
                Categories
                Article

                canine,ischemic stroke,stroke trigger,weather
                canine, ischemic stroke, stroke trigger, weather

                Comments

                Comment on this article