15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Activating and Inactivating Hormone Receptor Mutations

      review-article
      Hormone Research in Paediatrics
      S. Karger AG
      Signal transduction, Genetic diseases, Receptor mutations, Hormone resistance

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The unravelling of gene structures of hormones, their receptors and the various components of their signal transduction apparatus has enabled diagnosis of the aetiology of hormone resistance at the molecular level. Inactivating mutations can be found in hormone receptor genes or those encoding components of the post-receptor signal transduction cascade. Another category of receptor mutation is that causing constitutive receptor activation, which results in ligand-independent, inappropriate or supraphysiological hormone action and in some cases malignant growth. The purpose of this contribution is to review the different types of inactivation and activation mechanisms that are induced by receptor mutations, using some of the best characterised mutations as examples. In addition, the currently known mutations of hormone receptors are briefly summarised.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.

          The adipocyte-specific hormone leptin, the product of the obese (ob) gene, regulates adipose-tissue mass through hypothalamic effects on satiety and energy expenditure. Leptin acts through the leptin receptor, a single-transmembrane-domain receptor of the cytokine-receptor family. In rodents, homozygous mutations in genes encoding leptin or the leptin receptor cause early-onset morbid obesity, hyperphagia and reduced energy expenditure. These rodents also show hypercortisolaemia, alterations in glucose homeostasis, dyslipidaemia, and infertility due to hypogonadotropic hypogonadisms. In humans, leptin deficiency due to a mutation in the leptin gene is associated with early-onset obesity. Here we describe a homozygous mutation in the human leptin receptor gene that results in a truncated leptin receptor lacking both the transmembrane and the intracellular domains. In addition to their early-onset morbid obesity, patients homozygous for this mutation have no pubertal development and their secretion of growth hormone and thyrotropin is reduced. These results indicate that leptin is an important physiological regulator of several endocrine functions in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure.

            Hypergonadotropic ovarian dysgenesis (ODG) with normal karyotype is a heterogeneous condition that in some cases displays Mendelian recessive inheritance. By systematically searching for linkage in multiplex affected families, we mapped a locus for ODG to chromosome 2p. As the previously cloned follicle-stimulating hormone receptor (FSHR) gene had been assigned to 2p, we searched it for mutations. A C566T transition in exon 7 of FSHR predicting an Ala to Val substitution at residue 189 in the extracellular ligand-binding domain segregated perfectly with the disease phenotype. Expression of the gene in transfected cells demonstrated a dramatic reduction of binding capacity and signal transduction, but apparently normal ligand-binding affinity of the mutated receptor. We conclude that the mutation causes ODG in these families.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility.

              Gonadal function is controlled by the two pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). While LH mainly regulates gonadal steroidogenesis, FSH is considered essential for folliculogenesis in the female and spermatogenesis in the male. We recently discovered that an inactivating point mutation in the FSH receptor (R) gene causes a recessively inherited form of hypergonadotropic ovarian failure in homozygous females. This 566C-->T mutation, predicting an alanine to valine substitution, is located in exon 7 of the FSHR gene, in the region encoding the extracellular domain of the receptor molecule. Functional testing showed a clear-cut reduction in ligand binding and signal transduction by the mutated receptor. Hence, lack of FSH function is incompatible with ovarian follicular maturation and female fertility. In the male, FSH is generally considered essential for the pubertal initiation of spermatogenesis and maintenance of quantitatively normal sperm production in adults. We report here the first characterization of males homozygous for an inactivating FSHR mutation. They have variable degrees of spermatogenic failure, but, surprisingly, do not show azoospermia or absolute infertility. These results question the essential role of FSH for the initiation of spermatogenesis, and demonstrate that FSH is more important for female than for male fertility.
                Bookmark

                Author and article information

                Journal
                HRE
                Horm Res Paediatr
                10.1159/issn.1663-2818
                Hormone Research in Paediatrics
                S. Karger AG
                978-3-8055-7155-5
                978-3-318-00645-2
                1663-2818
                1663-2826
                2000
                August 2000
                17 November 2004
                : 53
                : Suppl 3
                : 9-16
                Affiliations
                Department of Physiology, University of Turku, Finland, and Department of Obstetrics and Gynaecology, University of Aberdeen, UK
                Article
                23525 Horm Res 2000;53(suppl 3):9–16
                10.1159/000023525
                10971096
                d15fbe9b-60b1-4d8c-85b0-c106a68e9905
                © 2000 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 2, Tables: 1, References: 40, Pages: 8
                Categories
                Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Receptor mutations,Genetic diseases,Signal transduction,Hormone resistance

                Comments

                Comment on this article