31
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Virus glycosylation: role in virulence and immune interactions

      review-article
      1 , 2 , 3
      Trends in Microbiology
      Elsevier Ltd.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study of N-linked glycosylation as it relates to virus biology has become an area of intense interest in recent years due to its ability to impart various advantages to virus survival and virulence. HIV and influenza, two clear threats to human health, have been shown to rely on expression of specific oligosaccharides to evade detection by the host immune system. Additionally, other viruses such as Hendra, SARS-CoV, influenza, hepatitis and West Nile rely on N-linked glycosylation for crucial functions such as entry into host cells, proteolytic processing and protein trafficking. This review focuses on recent findings on the importance of glycosylation to viral virulence and immune evasion for several prominent human pathogens.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

          Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus.

            The lectins DC-SIGN and DC-SIGNR can augment viral infection; however, the range of pathogens interacting with these attachment factors is incompletely defined. Here we show that DC-SIGN and DC-SIGNR enhance infection mediated by the glycoprotein (GP) of Marburg virus (MARV) and the S protein of severe acute respiratory syndrome coronavirus and might promote viral dissemination. SIGNR1, a murine DC-SIGN homologue, also enhanced infection driven by MARV and Ebola virus GP and could be targeted to assess the role of attachment factors in filovirus infection in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibody domain exchange is an immunological solution to carbohydrate cluster recognition.

              Human antibody 2G12 neutralizes a broad range of human immunodeficiency virus type 1 (HIV-1) isolates by binding an unusually dense cluster of carbohydrate moieties on the "silent" face of the gp120 envelope glycoprotein. Crystal structures of Fab 2G12 and its complexes with the disaccharide Manalpha1-2Man and with the oligosaccharide Man9GlcNAc2 revealed that two Fabs assemble into an interlocked VH domain-swapped dimer. Further biochemical, biophysical, and mutagenesis data strongly support a Fab-dimerized antibody as the prevalent form that recognizes gp120. The extraordinary configuration of this antibody provides an extended surface, with newly described binding sites, for multivalent interaction with a conserved cluster of oligomannose type sugars on the surface of gp120. The unique interdigitation of Fab domains within an antibody uncovers a previously unappreciated mechanism for high-affinity recognition of carbohydrate or other repeating epitopes on cell or microbial surfaces.
                Bookmark

                Author and article information

                Contributors
                Journal
                Trends Microbiol
                Trends Microbiol
                Trends in Microbiology
                Elsevier Ltd.
                0966-842X
                1878-4380
                30 March 2007
                May 2007
                30 March 2007
                : 15
                : 5
                : 211-218
                Affiliations
                [1 ]Department of Pediatrics, Program in Vaccine Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
                [2 ]Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
                [3 ]Department of Veteran Affairs, Nashville, TN 37212, USA
                Article
                S0966-842X(07)00046-7
                10.1016/j.tim.2007.03.003
                7127133
                17398101
                d161e81f-a291-4548-9094-04586ecad64f
                Copyright © 2007 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article