37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics

      ,

      Physical Review Letters

      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We construct complex networks from pseudoperiodic time series, with each cycle represented by a single node in the network. We investigate the statistical properties of these networks for various time series and find that time series with different dynamics exhibit distinct topological structures. Specifically, noisy periodic signals correspond to random networks, and chaotic time series generate networks that exhibit small world and scale free features. We show that this distinction in topological structure results from the hierarchy of unstable periodic orbits embedded in the chaotic attractor. Standard measures of structure in complex networks can therefore be applied to distinguish different dynamic regimes in time series. Application to human electrocardiograms shows that such statistical properties are able to differentiate between the sinus rhythm cardiograms of healthy volunteers and those of coronary care patients.

          Related collections

          Most cited references 14

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Statistical mechanics of complex networks

            Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emergence of Scaling in Random Networks

              Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                June 2006
                June 14 2006
                : 96
                : 23
                Article
                10.1103/PhysRevLett.96.238701
                16803415
                d16738f4-6009-45b9-b47f-b7d711b54da8
                © 2006

                Comments

                Comment on this article