32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clostridium perfringens can induce necrotic enteritis of chickens, which causes large economic losses every year. Bacillus licheniformis, a probiotic, can inhibit the growth of pathogenic bacteria such as Clostridium perfringens, thereby improving the health status of chickens. However, from a microbial ecology perspective, the mechanisms by which alterations to the gut microbiota improve health remain unknown. In this study, we used Illumina MiSeq sequencing to investigate the cecal microbiota of a negative control group (NC), a C. perfringens and Eimeria challenge group with fishmeal supplementation (PC), a group supplemented with fishmeal and infected with coccidia (FC), and group PC with B. licheniformis supplementation (BL). We found that the health status of C. perfringens-challenged chickens was compromised, and that B. licheniformis improved the growth of the chickens challenged with pathogens. Microbial diversity analysis and taxonomic profiling of groups NC, PC, and FC revealed a disturbed cecal microflora of the birds with C. perfringens. We also characterized the microbiota of the chickens in the BL group using several methods. Principal coordinate analysis demonstrated that, compared with group PC, the bacterial community structure of group BL was more similar to that of group NC. Linear discriminant analysis with effect size revealed less differentially represented bacterial taxa between groups BL and NC than between groups PC and NC. In addition, groups BL and NC appeared to have similar overrepresented microbial taxa (such as Bacteroides, Helicobacter, Megamonas, and Akkermansia) compared with group PC. Finally, a phylogenetic investigation of communities by reconstruction of unobserved states analysis indicated that large differences existed between group PC and groups NC and BL. In conclusion, pre-treatment with B. licheniformis reduced the disturbance of the cecal microbiome induced by challenge with C. perfringens and other factors in broiler chickens.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Bacterial census of poultry intestinal microbiome.

          The objective of this study was to generate a phylogenetic diversity census of bacteria identified in the intestinal tract of chickens and turkeys using a naïve analysis of all the curated 16S rRNA gene sequences archived in public databases. High-quality sequences of chicken and turkey gastrointestinal origin (3,184 and 1,345, respectively) were collected from the GenBank, Ribosomal Database Project, and Silva comprehensive ribosomal RNA database. Through phylogenetic and statistical analysis, 915 and 464 species-equivalent operational taxonomic units (defined at 0.03 phylogenetic distance) were found in the chicken and the turkey sequence collections, respectively. Of the 13 bacterial phyla identified in both bird species, Firmicutes, Bacteroidetes, and Proteobacteria were the largest phyla, accounting for >90% of all the sequences. The chicken sequences represent 117 established bacterial genera, and the turkey sequences represent 69 genera. The most predominant genera found in both the chicken and the turkey sequence data sets were Clostridium, Ruminococcus, Lactobacillus, and Bacteroides, but with different distribution between the 2 bird species. The estimated coverage of bacterial diversity of chicken and turkey reached 89 and 68% at species-equivalent and 93 and 73% at genus-equivalent levels, respectively. Less than 7,000 bacterial sequences from each bird species from various locations would be needed to reach 99% coverage for either bird species. Based on annotation of the sequence records, cecum was the most sampled gut segment. Chickens and turkeys were shown to have distinct intestinal microbiomes, sharing only 16% similarity at the species-equivalent level. Besides identifying gaps in knowledge on bacterial diversity in poultry gastrointestinal tract, the bacterial census generated in this study may serve as a framework for future studies and development of analytic tools.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome

            Chickens are major source of food and protein worldwide. Feed conversion and the health of chickens relies on the largely unexplored complex microbial community that inhabits the chicken gut, including the ceca. We have carried out deep microbial community profiling of the microbiota in twenty cecal samples via 16S rRNA gene sequences and an in-depth metagenomics analysis of a single cecal microbiota. We recovered 699 phylotypes, over half of which appear to represent previously unknown species. We obtained 648,251 environmental gene tags (EGTs), the majority of which represent new species. These were binned into over two-dozen draft genomes, which included Campylobacter jejuni and Helicobacter pullorum. We found numerous polysaccharide- and oligosaccharide-degrading enzymes encoding within the metagenome, some of which appeared to be part of polysaccharide utilization systems with genetic evidence for the co-ordination of polysaccharide degradation with sugar transport and utilization. The cecal metagenome encodes several fermentation pathways leading to the production of short-chain fatty acids, including some with novel features. We found a dozen uptake hydrogenases encoded in the metagenome and speculate that these provide major hydrogen sinks within this microbial community and might explain the high abundance of several genera within this microbiome, including Campylobacter, Helicobacter and Megamonas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome

              Background The complex microbiome of the ceca of chickens plays an important role in nutrient utilization, growth and well-being of these animals. Since we have a very limited understanding of the capabilities of most species present in the cecum, we investigated the role of the microbiome by comparative analyses of both the microbial community structure and functional gene content using random sample pyrosequencing. The overall goal of this study was to characterize the chicken cecal microbiome using a pathogen-free chicken and one that had been challenged with Campylobacter jejuni. Methodology/Principal Findings Comparative metagenomic pyrosequencing was used to generate 55,364,266 bases of random sampled pyrosequence data from two chicken cecal samples. SSU rDNA gene tags and environmental gene tags (EGTs) were identified using SEED subsystems-based annotations. The distribution of phylotypes and EGTs detected within each cecal sample were primarily from the Firmicutes, Bacteroidetes and Proteobacteria, consistent with previous SSU rDNA libraries of the chicken cecum. Carbohydrate metabolism and virulence genes are major components of the EGT content of both of these microbiomes. A comparison of the twelve major pathways in the SEED Virulence Subsystem (metavirulome) represented in the chicken cecum, mouse cecum and human fecal microbiomes showed that the metavirulomes differed between these microbiomes and the metavirulomes clustered by host environment. The chicken cecum microbiomes had the broadest range of EGTs within the SEED Conjugative Transposon Subsystem, however the mouse cecum microbiomes showed a greater abundance of EGTs in this subsystem. Gene assemblies (32 contigs) from one microbiome sample were predominately from the Bacteroidetes, and seven of these showed sequence similarity to transposases, whereas the remaining sequences were most similar to those from catabolic gene families. Conclusion/Significance This analysis has demonstrated that mobile DNA elements are a major functional component of cecal microbiomes, thus contributing to horizontal gene transfer and functional microbiome evolution. Moreover, the metavirulomes of these microbiomes appear to associate by host environment. These data have implications for defining core and variable microbiome content in a host species. Furthermore, this suggests that the evolution of host specific metavirulomes is a contributing factor in disease resistance to zoonotic pathogens.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: SoftwareRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: Software
                Role: Funding acquisitionRole: Validation
                Role: Project administrationRole: SupervisionRole: Validation
                Role: Data curation
                Role: Data curation
                Role: Resources
                Role: Investigation
                Role: Software
                Role: Supervision
                Role: Resources
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                3 August 2017
                2017
                : 12
                : 8
                : e0182426
                Affiliations
                [1 ] Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, China
                [2 ] Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Sichuan Province, Chengdu, China
                [3 ] Boshan Developing of Agricultural Technology Co., Ltd., Ya’an, China
                University of New England, AUSTRALIA
                Author notes

                Competing Interests: The commercial affiliation Boshan Developing of Agricultural Technology Co., Ltd, included in the author list does not alter our adherence to PLOS ONE policies on sharing data and materials. The authors declare no potential competing interests.

                Article
                PONE-D-16-39969
                10.1371/journal.pone.0182426
                5542615
                28771569
                d184b75d-4a39-4341-bab6-d6b8faab3cc4
                © 2017 Lin et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 October 2016
                : 18 July 2017
                Page count
                Figures: 6, Tables: 1, Pages: 18
                Funding
                The commercial affiliation Boshan Developing of Agricultural Technology Co., Ltd, played a role in our animal experiment. The author attached to this commercial affiliation was in charge of the sample collection, transportation and preservation. The funder provided support in the form of research materials, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the author contributions section.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Bacteria
                Gut Bacteria
                Clostridium Perfringens
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Birds
                Fowl
                Gamefowl
                Chickens
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Birds
                Poultry
                Chickens
                Biology and Life Sciences
                Plant Science
                Lichenology
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbiome
                Biology and Life Sciences
                Genetics
                Genomics
                Microbial Genomics
                Microbiome
                Biology and Life Sciences
                Microbiology
                Microbial Genomics
                Microbiome
                Biology and Life Sciences
                Organisms
                Protozoans
                Parasitic Protozoans
                Eimeria
                Biology and Life Sciences
                Ecology
                Ecological Metrics
                Species Diversity
                Ecology and Environmental Sciences
                Ecology
                Ecological Metrics
                Species Diversity
                Biology and Life Sciences
                Organisms
                Bacteria
                Biology and Life Sciences
                Microbiology
                Probiotics
                Custom metadata
                All relevant data are within the paper and its Supporting Information files. The whole sequencing data are available from the NCBI database (accession number SRP094630).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article