11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal in mice

        , , , ,
      Stress
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          A role for brain stress systems in addiction.

          Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress, dysregulation of drug reward pathways, and the transition to drug dependence.

            This review provides a neuroadaptive perspective regarding the role of the hormonal and brain stress systems in drug addiction with a focus on the changes that occur during the transition from limited access to drugs to long-term compulsive use of drugs. A dramatic escalation in drug intake with extended access to drug self-administration is characterized by a dysregulation of brain reward pathways. Hormonal studies using an experimenter-administered cocaine binge model and an escalation self-administration model have revealed large increases in ACTH and corticosterone in rats during an acute binge with attenuation during the chronic binge stage and a reactivation of the hypothalamic-pituitary-adrenal axis during acute withdrawal. The activation of the hypothalamic-pituitary-adrenal axis with cocaine appears to depend on feed-forward activation of the mesolimbic dopamine system. At the same time, escalation in drug intake with either extended access or dependence-induction produces an activation of the brain stress system's corticotropin-releasing factor outside of the hypothalamus in the extended amygdala, which is particularly evident during acute withdrawal. A model of the role of different levels of hormonal/brain stress activation in addiction is presented that has heuristic value for understanding individual vulnerability to drug dependence and novel treatments for the disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurobiological similarities in depression and drug dependence: a self-medication hypothesis.

              Epidemiological and clinical data indicate high comorbidity between depression and drug dependence that may reflect an attempt to self-medicate with drugs of abuse. The present review examines whether these two psychiatric disorders are related by attempting to identify similarities in the neurobiology of depression and drug dependence. Emphasis is put on the neuromechanisms that may mediate specific core symptoms of both disorders that reflect alterations in reward and motivational processes. First, the epidemiological and clinical data on the comorbidity of the two disorders are reviewed briefly. Then, the neuroadaptations associated with psychomotor stimulant, opiate, ethanol, nicotine, and benzodiazepine dependence in animals are reviewed. Finally, the neurotransmitter systems whose function appears to be altered in depression (i.e., serotonin, norepinephrine, acetylcholine, dopamine, gamma-aminobutyric acid, corticotropin releasing factor, neuropeptide Y, and somatostatin), as revealed primarily by animal studies, are discussed. It is concluded that drug dependence and depression may be associated with alterations in some of the same neurotransmitter systems and, in particular, with alterations of neurotransmitter function in limbic-related brain structures. Thus, these two psychiatric disorders may be linked by some shared neurobiology. Nevertheless, it remains unclear whether drug abuse and depression are different symptomatic expressions of the same preexisting neurobiological abnormalities, or whether repeated drug abuse leads to the abnormalities mediating depression (i.e., drug-induced depressions). The hypothesis of self-medication of non-drug- and drug-induced depressions with drugs of abuse is also discussed as a potentially important explanatory concept in understanding the observed clinical comorbidity of these two psychiatric disorders.
                Bookmark

                Author and article information

                Journal
                Stress
                Stress
                Informa UK Limited
                1025-3890
                1607-8888
                July 28 2010
                July 28 2010
                : 13
                : 6
                : 481-490
                Article
                10.3109/10253891003786415
                d18a1f3a-43b4-482f-8c69-b68c4f572796
                © 2010
                History

                Comments

                Comment on this article