4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      DFT study of the effect of solvent on the H-atom transfer involved in the scavenging of the free radicals ●HO2 and ●O2 − by caffeic acid phenethyl ester and some of its derivatives

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phenolics as potential antioxidant therapeutic agents: mechanism and actions.

            Accumulating chemical, biochemical, clinical and epidemiological evidence supports the chemoprotective effects of phenolic antioxidants against oxidative stress-mediated disorders. The pharmacological actions of phenolic antioxidants stem mainly from their free radical scavenging and metal chelating properties as well as their effects on cell signaling pathways and on gene expression. The antioxidant capacities of phenolic compounds that are widely distributed in plant-based diets were assessed by the Trolox equivalent antioxidant capacity (TEAC), the ferric reducing antioxidant power (FRAP), the hypochlorite scavenging capacity, the deoxyribose method and the copper-phenanthroline-dependent DNA oxidation assays. Based on the TEAC, FRAP and hypochlorite scavenging data, the observed activity order was: procyanidin dimer>flavanol>flavonol>hydroxycinnamic acids>simple phenolic acids. Among the flavonol aglycones, the antioxidant propensities decrease in the order quercetin, myricetin and kaempferol. Gallic acid and rosmarinic acid were the most potent antioxidants among the simple phenolic and hydroxycinnamic acids, respectively. Ferulic acid displayed the highest inhibitory activity against deoxyribose degradation but no structure-activity relationship could be established for the activities of the phenolic compounds in the deoxyribose assay. The efficacies of the phenolic compounds differ depending on the mechanism of antioxidant action in the respective assay used, with procyanidin dimers and flavan-3-ols showing very potent activities in most of the systems tested. Compared to the physiologically active (glutathione, alpha-tocopherol, ergothioneine) and synthetic (Trolox, BHA, BHT) antioxidants, these compounds exhibited much higher efficacy. Plant-derived phenolics represents good sources of natural antioxidants, however, further investigation on the molecular mechanism of action of these phytochemicals is crucial to the evaluation of their potential as prophylactic agents.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              6-31G* basis set for third-row atoms

                Bookmark

                Author and article information

                Journal
                Journal of Molecular Modeling
                J Mol Model
                Springer Nature America, Inc
                1610-2940
                0948-5023
                November 2014
                November 13 2014
                November 2014
                : 20
                : 11
                Article
                10.1007/s00894-014-2509-9
                d1931d27-f06a-4b61-b9d9-216e38d77824
                © 2014
                History

                Comments

                Comment on this article