88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Strategies and challenges for the next generation of antibody–drug conjugates

      , , ,
      Nature Reviews Drug Discovery
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibody–drug conjugate (ADCs), which aim to target highly cytotoxic drugs specifically to cancer cells, are one of the fastest growing classes of anticancer therapeutics, with more than 50 such agents currently in clinical trials. This Review discusses lessons learned and emerging strategies in the development of ADCs, including aspects such as target selection, the development of warheads, the optimization of linkers and new conjugation chemistries, and provides an overview of agents that are currently in clinical trials.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Strategies and challenges for the next generation of therapeutic antibodies.

          Antibodies and related products are the fastest growing class of therapeutic agents. By analysing the regulatory approvals of IgG-based biotherapeutic agents in the past 10 years, we can gain insights into the successful strategies used by pharmaceutical companies so far to bring innovative drugs to the market. Many challenges will have to be faced in the next decade to bring more efficient and affordable antibody-based drugs to the clinic. Here, we discuss strategies to select the best therapeutic antigen targets, to optimize the structure of IgG antibodies and to design related or new structures with additional functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Site-specific antibody drug conjugates for cancer therapy

            Antibody therapeutics have revolutionized the treatment of cancer over the past two decades. Antibodies that specifically bind tumor surface antigens can be effective therapeutics; however, many unmodified antibodies lack therapeutic activity. These antibodies can instead be applied successfully as guided missiles to deliver potent cytotoxic drugs in the form of antibody drug conjugates (ADCs). The success of ADCs is dependent on four factors—target antigen, antibody, linker, and payload. The field has made great progress in these areas, marked by the recent approval by the US Food and Drug Administration of two ADCs, brentuximab vedotin (Adcetris®) and ado-trastuzumab emtansine (Kadcyla®). However, the therapeutic window for many ADCs that are currently in pre-clinical or clinical development remains narrow and further improvements may be required to enhance the therapeutic potential of these ADCs. Production of ADCs is an area where improvement is needed because current methods yield heterogeneous mixtures that may include 0–8 drug species per antibody molecule. Site-specific conjugation has been recently shown to eliminate heterogeneity, improve conjugate stability, and increase the therapeutic window. Here, we review and describe various site-specific conjugation strategies that are currently used for the production of ADCs, including use of engineered cysteine residues, unnatural amino acids, and enzymatic conjugation through glycotransferases and transglutaminases. In addition, we also summarize differences among these methods and highlight critical considerations when building next-generation ADC therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer.

              Trastuzumab (Herceptin(®)) is currently used as a treatment for patients whose breast tumors overexpress HER2/ErbB2. Trastuzumab-DM1 (T-DM1, trastuzumab emtansine) is designed to combine the clinical benefits of trastuzumab with a potent microtubule-disrupting drug, DM1 (a maytansine derivative). Currently T-DM1 is being tested in multiple clinical trials. The mechanisms of action for trastuzumab include inhibition of PI3K/AKT signaling pathway, inhibition of HER-2 shedding and Fcγ receptor mediated engagement of immune cells, which may result in antibody-dependent cellular cytotoxicity (ADCC). Here we report that T-DM1 retains the mechanisms of action of unconjugated trastuzumab and is active against lapatinib resistant cell lines and tumors.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Drug Discovery
                Nat Rev Drug Discov
                Springer Nature
                1474-1776
                1474-1784
                March 17 2017
                March 17 2017
                :
                :
                Article
                10.1038/nrd.2016.268
                28303026
                d1936162-4871-4fa3-bb2b-f7db8b1c292d
                © 2017
                History

                Comments

                Comment on this article