7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4 T Cells during Tuberculosis

      , , , , ,
      Cell Reports
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge.

          Interferon-gamma is key in limiting Mycobacterium tuberculosis infection. Here we show that vaccination triggered an accelerated interferon-gamma response by CD4(+) T cells in the lung during subsequent M. tuberculosis infection. Interleukin 23 (IL-23) was essential for the accelerated response, for early cessation of bacterial growth and for establishment of an IL-17-producing CD4(+) T cell population in the lung. The recall response of the IL-17-producing CD4(+) T cell population occurred concurrently with expression of the chemokines CXCL9, CXCL10 and CXCL11. Depletion of IL-17 during challenge reduced the chemokine expression and accumulation of CD4(+) T cells producing interferon-gamma in the lung. We propose that vaccination induces IL-17-producing CD4(+) T cells that populate the lung and, after challenge, trigger the production of chemokines that recruit CD4(+) T cells producing interferon-gamma, which ultimately restrict bacterial growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells.

            Th1 cells are critical for containment of Mycobacterium tuberculosis infection, but little else is known about the properties of protective CD4 T cell responses. In this study, we show that the pulmonary Th1 response against M. tuberculosis is composed of two populations that are either CXCR3(hi) and localize to lung parenchyma or are CX3CR1(hi)KLRG1(hi) and are retained within lung blood vasculature. M. tuberculosis-specific parenchymal CD4 T cells migrate rapidly back into the lung parenchyma upon adoptive transfer, whereas the intravascular effectors produce the highest levels of IFN-γ in vivo. Importantly, parenchymal T cells displayed greater control of infection compared with the intravascular counterparts upon transfer into susceptible T cell-deficient hosts. Thus, we identified a subset of naturally generated M. tuberculosis-specific CD4 T cells with enhanced protective capacity and showed that control of M. tuberculosis correlates with the ability of CD4 T cells to efficiently enter the lung parenchyma rather than produce high levels of IFN-γ.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection.

              IFN-γ is necessary in both humans and mice for control of Mycobacterium tuberculosis. CD4 T cells are a significant source of IFN-γ during acute infection in mice and are required for control of bacterial growth and host survival. However, several other types of cells can and do produce IFN-γ during the course of the infection. We sought to determine whether IFN-γ from sources other than CD4 T cells was sufficient to control M. tuberculosis infection and whether CD4 T cells had a role in addition to IFN-γ production. To investigate the role of IFN-γ from CD4 T cells, a murine adoptive transfer model was developed in which all cells were capable of producing IFN-γ, with the exception of CD4 T cells. Our data in this system support that CD4 T cells are essential for control of infection, but also that IFN-γ from CD4 T cells is necessary for host survival and optimal long-term control of bacterial burden. In addition, IFN-γ from CD4 T cells was required for a robust CD8 T cell response. IFN-γ from T cells inhibited intracellular replication of M. tuberculosis in macrophages, suggesting IFN-γ may be necessary for intracellular bactericidal activity. Thus, although CD4 T cells play additional roles in the control of M. tuberculosis infection, IFN-γ is a major function by which these cells participate in resistance to tuberculosis.
                Bookmark

                Author and article information

                Journal
                Cell Reports
                Cell Reports
                Elsevier BV
                22111247
                March 2017
                March 2017
                : 18
                : 13
                : 3091-3104
                Article
                10.1016/j.celrep.2017.03.007
                5399512
                28355562
                d19a90d7-d170-4e35-8f5d-b6b429049867
                © 2017
                History

                Comments

                Comment on this article