63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intrinsic Disorder Is a Common Feature of Hub Proteins from Four Eukaryotic Interactomes

      research-article
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent proteome-wide screening approaches have provided a wealth of information about interacting proteins in various organisms. To test for a potential association between protein connectivity and the amount of predicted structural disorder, the disorder propensities of proteins with various numbers of interacting partners from four eukaryotic organisms (Caenorhabditis elegans, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens) were investigated. The results of PONDR VL-XT disorder analysis show that for all four studied organisms, hub proteins, defined here as those that interact with ≥10 partners, are significantly more disordered than end proteins, defined here as those that interact with just one partner. The proportion of predicted disordered residues, the average disorder score, and the number of predicted disordered regions of various lengths were higher overall in hubs than in ends. A binary classification of hubs and ends into ordered and disordered subclasses using the consensus prediction method showed a significant enrichment of wholly disordered proteins and a significant depletion of wholly ordered proteins in hubs relative to ends in worm, fly, and human. The functional annotation of yeast hubs and ends using GO categories and the correlation of these annotations with disorder predictions demonstrate that proteins with regulation, transcription, and development annotations are enriched in disorder, whereas proteins with catalytic activity, transport, and membrane localization annotations are depleted in disorder. The results of this study demonstrate that intrinsic structural disorder is a distinctive and common characteristic of eukaryotic hub proteins, and that disorder may serve as a determinant of protein interactivity.

          Synopsis

          From the formulation of Emil Fisher's lock-and-key hypothesis in 1894 until the early 1990s, a dominating and widely accepted concept in molecular biology was the protein structure–function paradigm. According to this concept, a protein can perform its biological function(s) only after folding into a specific rigid 3-D structure. Only recently has the validity of this structure–function paradigm been seriously challenged, primarily through the wealth of counterexamples that have gradually accumulated over the past 15 years. These counterexamples demonstrated that many proteins exist in a natively unfolded (or intrinsically disordered) state, and function without a prerequisite stably folded structure. In many cases, the lack of structure is required for biological function. Previous results have implicated intrinsic disorder as having an important role in protein interactions. The authors generalize this notion by comparing interaction networks from four eukaryotic organisms: yeast, worm, fly, and human. They have found that within these networks the proteins that interact with multiple protein partners (network hubs) are significantly more disordered than proteins that interact with a single protein partner (network ends). The results of this study demonstrate that intrinsic structural disorder is a distinctive and common characteristic of hub proteins, and that disorder may serve as a determinant of protein interactivity.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

            Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple and automated procedure for 192 yeast proteins, with positive responses identified by their positions in the array. In a second approach, we pooled cells expressing one of about 6,000 activation domain fusions to generate a library. We used a high-throughput screening procedure to screen nearly all of the 6,000 predicted yeast proteins, expressed as Gal4 DNA-binding domain fusion proteins, against the library, and characterized positives by sequence analysis. These approaches resulted in the detection of 957 putative interactions involving 1,004 S. cerevisiae proteins. These data reveal interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes. The results of these screens are shown here.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comprehensive two-hybrid analysis to explore the yeast protein interactome.

              Protein-protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the approximately 6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P., et al. (2000) Nature (London) 403, 623-627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                pcbi
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                August 2006
                4 August 2006
                23 June 2006
                : 2
                : 8
                : e100
                Affiliations
                [1 ]Laboratory of Statistical Genetics, The Rockefeller University, New York, New York, United States of America
                [2 ]Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
                [3 ]Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
                [4 ]Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
                [5 ]Indiana University School of Informatics, Bloomington, Indiana, United States of America
                [6 ]Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow, Russia
                University of Toronto, Canada
                Author notes
                * To whom correspondence should be addressed. E-mail: lilia@ 123456rockefeller.edu
                Article
                06-PLCB-RA-0152R2 plcb-02-08-01
                10.1371/journal.pcbi.0020100
                1526461
                16884331
                d1a1e92c-5dbe-429f-9153-94c0ba0c5530
                Copyright: © 2006 Haynes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 April 2006
                : 23 June 2006
                Page count
                Pages: 12
                Categories
                Research Article
                Bioinformatics - Computational Biology
                Molecular Biology - Structural Biology
                Eukaryotes
                Drosophila
                Caenorhabditis
                Homo (Human)
                Saccharomyces
                Custom metadata
                Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, et al. (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8): e100. DOI: 10.1371/journal.pcbi.0020100

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article