14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

          Abstract

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Energy production from biomass (Part 1): Overview of biomass.

          The use of renewable energy sources is becoming increasingly necessary, if we are to achieve the changes required to address the impacts of global warming. Biomass is the most common form of renewable energy, widely used in the third world but until recently, less so in the Western world. Latterly much attention has been focused on identifying suitable biomass species, which can provide high-energy outputs, to replace conventional fossil fuel energy sources. The type of biomass required is largely determined by the energy conversion process and the form in which the energy is required. In the first of three papers, the background to biomass production (in a European climate) and plant properties is examined. In the second paper, energy conversion technologies are reviewed, with emphasis on the production of a gaseous fuel to supplement the gas derived from the landfilling of organic wastes (landfill gas) and used in gas engines to generate electricity. The potential of a restored landfill site to act as a biomass source, providing fuel to supplement landfill gas-fuelled power stations, is examined, together with a comparison of the economics of power production from purpose-grown biomass versus waste-biomass. The third paper considers particular gasification technologies and their potential for biomass gasification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conversion of biomass to selected chemical products.

            This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels

                Bookmark

                Author and article information

                Contributors
                Role: Guest Editor
                Journal
                Beilstein J Org Chem
                Beilstein J Org Chem
                Beilstein Journal of Organic Chemistry
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                1860-5397
                2016
                12 October 2016
                : 12
                : 2173-2180
                Affiliations
                [1 ]Clean Synthetic Methodology Group, Dipartimento di Chimica, Università di Parma, Parco Area delle Scienze 17A, I-43124 Parma, Italy
                [2 ]Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. Tel: +31-20-5256515
                [3 ]Istituto IMEM-CNR, Parco Area delle Scienze 37/A, I-43124 Parma, Italy
                Article
                10.3762/bjoc.12.207
                5082645
                27829924
                d1b42c17-48f7-4629-9dd3-8b8c1e231171
                Copyright © 2016, Maggi et al.; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: ( http://www.beilstein-journals.org/bjoc)

                History
                : 27 July 2016
                : 22 September 2016
                Categories
                Full Research Paper
                Chemistry
                Organic Chemistry

                Organic & Biomolecular chemistry
                esterification,heterogeneous catalysis,renewable feedstocks,supported organic catalysts,sustainable chemistry

                Comments

                Comment on this article