5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of the Bacterial Diversity of Paipa Cheese (a Traditional Raw Cow’s Milk Cheese from Colombia) by High-Throughput Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Paipa cheese is a traditional, semi-ripened cheese made from raw cow’s milk in Colombia. The aim of this work was to gain insights on the microbiota of Paipa cheese by using a culture-independent approach. Method: two batches of Paipa cheese from three formal producers were sampled during ripening for 28 days. Total DNA from the cheese samples was used to obtain 16S rRNA gene sequences by using Illumina technology. Results: Firmicutes was the main phylum found in the cheeses (relative abundances: 59.2–82.0%), followed by Proteobacteria, Actinobacteria and Bacteroidetes. Lactococcus was the main genus, but other lactic acid bacteria ( Enterococcus, Leuconostoc and Streptococcus) were also detected. Stapylococcus was also relevant in some cheese samples. The most important Proteobacteria were Enterobacteriaceae, Aeromonadaceae and Moraxellaceae. Enterobacter and Enterobacteriaceae (others) were detected in all cheese samples. Serratia and Citrobacter were detected in some samples. Aeromonas and Acinetobacter were also relevant. Other minor genera detected were Marinomonas, Corynebacterium 1 and Chryseobacterium. The principal coordinates analysis suggested that there were producer-dependent differences in the microbiota of Paipa cheeses. Conclusions: lactic acid bacteria are the main bacterial group in Paipa cheeses. However, other bacterial groups, including spoilage bacteria, potentially toxin producers, and bacteria potentially pathogenic to humans and/or prone to carry antimicrobial resistance genes are also relevant in the cheeses.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

          The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known "mock communities" at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role and application of enterococci in food and health.

            The genus Enterococcus is the most controversial group of lactic acid bacteria. Studies on the microbiota of many traditional cheeses in the Mediterranean countries have indicated that enterococci play an important role in the ripening of these cheeses, probably through proteolysis, lipolysis, and citrate breakdown, hence contributing to their typical taste and flavour. Enterococci are also present in other fermented foods, such as sausages and olives. However, their role in these products has not been fully elucidated. Furthermore, the production of bacteriocins by enterococci is well documented. Moreover, enterococci are nowadays used as probiotics. At the same time, however, enterococci have been associated with a number of human infections. Several virulence factors have been described and the number of vancomycin-resistant enterococci is increasing. The controversial nature of enterococci has prompted an enormous increase in scientific papers and reviews in recent years, where researchers have been divided into two groups, namely pro and contra enterococci. To the authors' impression, the negative traits have been focused on very extensively. The aim of the present review is to give a balanced overview of both beneficial and virulence features of this divisive group of microorganisms, because it is only acquaintance with both sides that may allow their safe exploitation as starter cultures or co-cultures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nucleic acid-based approaches to investigate microbial-related cheese quality defects

              The microbial profile of cheese is a primary determinant of cheese quality. Microorganisms can contribute to aroma and taste defects, form biogenic amines, cause gas and secondary fermentation defects, and can contribute to cheese pinking and mineral deposition issues. These defects may be as a result of seasonality and the variability in the composition of the milk supplied, variations in cheese processing parameters, as well as the nature and number of the non-starter microorganisms which come from the milk or other environmental sources. Such defects can be responsible for production and product recall costs and thus represent a significant economic burden for the dairy industry worldwide. Traditional non-molecular approaches are often considered biased and have inherently slow turnaround times. Molecular techniques can provide early and rapid detection of defects that result from the presence of specific spoilage microbes and, ultimately, assist in enhancing cheese quality and reducing costs. Here we review the DNA-based methods that are available to detect/quantify spoilage bacteria, and relevant metabolic pathways in cheeses and, in the process, highlight how these strategies can be employed to improve cheese quality and reduce the associated economic burden on cheese processors.
                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                06 February 2020
                February 2020
                : 8
                : 2
                : 218
                Affiliations
                [1 ]Department of Biology and Microbiology, Faculty of Sciences and Engineering, Universidad de Boyacá, 150003 Tunja, Colombia; joscastellanos@ 123456uniboyaca.edu.co
                [2 ]Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; rppulido@ 123456ujaen.es (R.P.P.); mjgrande@ 123456ujaen.es (M.J.G.); rlucas@ 123456ujaen.es (R.L.)
                Author notes
                [* ]Correspondence: agalvez@ 123456ujaen.es
                Author information
                https://orcid.org/0000-0002-0180-9296
                Article
                microorganisms-08-00218
                10.3390/microorganisms8020218
                7074763
                32041151
                d1b93c15-4166-4e4b-8966-c8476c872882
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 December 2019
                : 04 February 2020
                Categories
                Article

                paipa cheese,bacterial diversity,lactic acid bacteria,staphylococcus,enterobacteriaceae,aromonadaceae,moraxellaceae

                Comments

                Comment on this article