8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting Tumor Microenvironment for Cancer Therapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer development is highly associated to the physiological state of the tumor microenvironment (TME). Despite the existing heterogeneity of tumors from the same or from different anatomical locations, common features can be found in the TME maturation of epithelial-derived tumors. Genetic alterations in tumor cells result in hyperplasia, uncontrolled growth, resistance to apoptosis, and metabolic shift towards anaerobic glycolysis (Warburg effect). These events create hypoxia, oxidative stress and acidosis within the TME triggering an adjustment of the extracellular matrix (ECM), a response from neighbor stromal cells (e.g., fibroblasts) and immune cells (lymphocytes and macrophages), inducing angiogenesis and, ultimately, resulting in metastasis. Exosomes secreted by TME cells are central players in all these events. The TME profile is preponderant on prognosis and impacts efficacy of anti-cancer therapies. Hence, a big effort has been made to develop new therapeutic strategies towards a more efficient targeting of TME. These efforts focus on: (i) therapeutic strategies targeting TME components, extending from conventional therapeutics, to combined therapies and nanomedicines; and (ii) the development of models that accurately resemble the TME for bench investigations, including tumor-tissue explants, “tumor on a chip” or multicellular tumor-spheroids.

          Related collections

          Most cited references 144

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoxia in cancer: significance and impact on clinical outcome.

          Hypoxia, a characteristic feature of locally advanced solid tumors, has emerged as a pivotal factor of the tumor (patho-)physiome since it can promote tumor progression and resistance to therapy. Hypoxia represents a "Janus face" in tumor biology because (a) it is associated with restrained proliferation, differentiation, necrosis or apoptosis, and (b) it can also lead to the development of an aggressive phenotype. Independent of standard prognostic factors, such as tumor stage and nodal status, hypoxia has been suggested as an adverse prognostic factor for patient outcome. Studies of tumor hypoxia involving the direct assessment of the oxygenation status have suggested worse disease-free survival for patients with hypoxic cervical cancers or soft tissue sarcomas. In head & neck cancers the studies suggest that hypoxia is prognostic for survival and local control. Technical limitations of the direct O(2) sensing technique have prompted the use of surrogate markers for tumor hypoxia, such as hypoxia-related endogenous proteins (e.g., HIF-1alpha, GLUT-1, CA IX) or exogenous bioreductive drugs. In many - albeit not in all - studies endogenous markers showed prognostic significance for patient outcome. The prognostic relevance of exogenous markers, however, appears to be limited. Noninvasive assessment of hypoxia using imaging techniques can be achieved with PET or SPECT detection of radiolabeled tracers or with MRI techniques (e.g., BOLD). Clinical experience with these methods regarding patient prognosis is so far only limited. In the clinical studies performed up until now, the lack of standardized treatment protocols, inconsistencies of the endpoints characterizing the oxygenation status and methodological differences (e.g., different immunohistochemical staining procedures) may compromise the power of the prognostic parameter used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.

            The combined inhibition of BRAF and MEK is hypothesized to improve clinical outcomes in patients with melanoma by preventing or delaying the onset of resistance observed with BRAF inhibitors alone. This randomized phase 3 study evaluated the combination of the BRAF inhibitor vemurafenib and the MEK inhibitor cobimetinib. We randomly assigned 495 patients with previously untreated unresectable locally advanced or metastatic BRAF V600 mutation-positive melanoma to receive vemurafenib and cobimetinib (combination group) or vemurafenib and placebo (control group). The primary end point was investigator-assessed progression-free survival. The median progression-free survival was 9.9 months in the combination group and 6.2 months in the control group (hazard ratio for death or disease progression, 0.51; 95% confidence interval [CI], 0.39 to 0.68; P<0.001). The rate of complete or partial response in the combination group was 68%, as compared with 45% in the control group (P<0.001), including rates of complete response of 10% in the combination group and 4% in the control group. Progression-free survival as assessed by independent review was similar to investigator-assessed progression-free survival. Interim analyses of overall survival showed 9-month survival rates of 81% (95% CI, 75 to 87) in the combination group and 73% (95% CI, 65 to 80) in the control group. Vemurafenib and cobimetinib was associated with a nonsignificantly higher incidence of adverse events of grade 3 or higher, as compared with vemurafenib and placebo (65% vs. 59%), and there was no significant difference in the rate of study-drug discontinuation. The number of secondary cutaneous cancers decreased with the combination therapy. The addition of cobimetinib to vemurafenib was associated with a significant improvement in progression-free survival among patients with BRAF V600-mutated metastatic melanoma, at the cost of some increase in toxicity. (Funded by F. Hoffmann-La Roche/Genentech; coBRIM ClinicalTrials.gov number, NCT01689519.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ExoCarta: A Web-Based Compendium of Exosomal Cargo.

              Exosomes are membranous vesicles that are released by a variety of cells into the extracellular microenvironment and are implicated in intercellular communication. As exosomes contain RNA, proteins and lipids, there is a significant interest in characterizing the molecular cargo of exosomes. Here, we describe ExoCarta (http://www.exocarta.org), a manually curated Web-based compendium of exosomal proteins, RNAs and lipids. Since its inception, the database has been highly accessed (>54,000 visitors from 135 countries). The current version of ExoCarta hosts 41,860 proteins, >7540 RNA and 1116 lipid molecules from more than 286 exosomal studies annotated with International Society for Extracellular Vesicles minimal experimental requirements for definition of extracellular vesicles. Besides, ExoCarta features dynamic protein-protein interaction networks and biological pathways of exosomal proteins. Users can download most often identified exosomal proteins based on the number of studies. The downloaded files can further be imported directly into FunRich (http://www.funrich.org) tool for additional functional enrichment and interaction network analysis.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                15 February 2019
                February 2019
                : 20
                : 4
                Affiliations
                UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa. Campus de Caparica, 2829-516 Caparica, Portugal; catromar@ 123456fct.unl.pt (C.R.-R.); ars.mendes@ 123456campus.fct.unl.pt (R.M.)
                Author notes
                [* ]Correspondence: pmvb@ 123456fct.unl.pt (P.V.B.); ma.fernandes@ 123456fct.unl.pt (A.R.F.); Tel./Fax: +(351)-21-294-85-30 (P.V.B. & A.R.F.)
                Article
                ijms-20-00840
                10.3390/ijms20040840
                6413095
                30781344
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Comments

                Comment on this article