13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Thrombin Peptide TP508 Stimulates Rapid Nitric Oxide Production in Human Endothelial Cells

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          TP508, a 23-amino-acid peptide representing a portion of human thrombin, promotes tissue revascularization and repair. The molecular mechanisms of TP508 action, however, remain unclear. Nitric oxide (NO) plays a crucial role in regulation of angiogenesis and wound healing. We, therefore, investigated TP508 effects on NO production in human endothelial cells. TP508 stimulated a rapid, dose-dependent, 2- to 4-fold increase in NO production. TP508 induced NO release as early as 5 min. Continued exposure to TP508 for 1–24 h increased NO concentrations over controls by 100.5 ± 9.6 and 463.3 ± 24.2 n M, respectively. These levels of NO release were similar to those produced in response to vascular endothelial growth factor (VEGF). TP508- and VEGF-induced NO production was decreased by inhibitors of PI-3K (LY294002) and Src (PP2). TP508 stimulated early transient phosphorylation of Src and Akt. In contrast to VEGF, TP508 stimulation of NO release was inhibited by PKC inhibitor (Go6976) and was independent of intracellular calcium mobilization. These results demonstrate that TP508 and VEGF stimulate NO production to similar levels but through distinct pathways. This study provides new insights into the initial molecular mechanisms by which TP508 may stimulate diverse cellular effects leading to tissue revascularization and wound healing.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability.

          Nitric oxide (NO) plays a critical role in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. However, the relative contribution of different NO synthase (NOS) isoforms to these processes is not known. Here, we evaluated the relative contributions of endothelial and inducible NOS (eNOS and iNOS, respectively) to angiogenesis and permeability of VEGF-induced angiogenic vessels. The contribution of eNOS was assessed by using an eNOS-deficient mouse, and iNOS contribution was assessed by using a selective inhibitor [l-N(6)-(1-iminoethyl) lysine, l-NIL] and an iNOS-deficient mouse. Angiogenesis was induced by VEGF in type I collagen gels placed in the mouse cranial window. Angiogenesis, vessel diameter, blood flow rate, and vascular permeability were proportional to NO levels measured with microelectrodes: Wild-type (WT) > or = WT with l-NIL or iNOS(-/-) > eNOS(-/-) > or = eNOS(-/-) with l-NIL. The role of NOS in VEGF-induced acute vascular permeability increase in quiescent vessels also was determined by using eNOS- and iNOS-deficient mice. VEGF superfusion significantly increased permeability in both WT and iNOS(-/-) mice but not in eNOS(-/-) mice. These findings suggest that eNOS plays a predominant role in VEGF-induced angiogenesis and vascular permeability. Thus, selective modulation of eNOS activity is a promising strategy for altering angiogenesis and vascular permeability in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells.

            Vascular endothelial growth factor (VEGF) is a regulator of vasculogenesis and angiogenesis. To investigate the role of nitric oxide (NO) in VEGF-induced proliferation and in vitro angiogenesis, human umbilical vein endothelial cells (HUVEC) were used. VEGF stimulated the growth of HUVEC in an NO-dependent manner. In addition, VEGF promoted the NO-dependent formation of network-like structures in HUVEC cultured in three dimensional (3D) collagen gels. Exposure of cells to VEGF led to a concentration-dependent increase in cGMP levels, an indicator of NO production, that was inhibited by nitro-L-arginine methyl ester. VEGF-stimulated NO production required activation of tyrosine kinases and increases in intracellular calcium, since tyrosine kinase inhibitors and calcium chelators attenuated VEGF-induced NO release. Moreover, two chemically distinct phosphoinositide 3 kinase (PI-3K) inhibitors attenuated NO release after VEGF stimulation. In addition, HUVEC incubated with VEGF for 24 h showed an increase in the amount of endothelial NO synthase (eNOS) protein and the release of NO. In summary, both short- and long-term exposure of human EC to VEGF stimulates the release of biologically active NO. While long-term exposure increases eNOS protein levels, short-term stimulation with VEGF promotes NO release through mechanisms involving tyrosine and PI-3K kinases, suggesting that NO mediates aspects of VEGF signaling required for EC proliferation and organization in vitro.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitric oxide synthase modulates angiogenesis in response to tissue ischemia.

              We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L-arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L-arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L-arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS-/- mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS-/- mice was not improved by administration of vascular endothelial growth factor (VEGF), suggesting that eNOS acts downstream from VEGF. Thus, (a) eNOS is a downstream mediator for in vivo angiogenesis, and (b) promoting eNOS activity by L-arginine supplementation accelerates in vivo angiogenesis. These findings suggest that defective endothelial NO synthesis may limit angiogenesis in patients with endothelial dysfunction related to atherosclerosis, and that oral L-arginine supplementation constitutes a potential therapeutic strategy for accelerating angiogenesis in patients with advanced vascular obstruction.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2010
                April 2010
                06 November 2009
                : 47
                : 3
                : 203-213
                Affiliations
                Therapeutic Peptide Development Laboratory, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Tex., USA
                Article
                255963 J Vasc Res 2010;47:203–213
                10.1159/000255963
                19893317
                d1c67453-cac6-4c9c-9a06-6dbcb14be2ed
                © 2009 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 04 March 2009
                : 02 June 2009
                Page count
                Figures: 6, References: 66, Pages: 11
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Thrombin,Wound healing,Vascular endothelial growth factor,Nitric oxide,Angiogenesis

                Comments

                Comment on this article