7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Weight loss after gastric bypass surgery in human obesity remodels promoter methylation.

      Cell Reports
      CpG Islands, DNA Methylation, Female, Gastric Bypass, Genome, Human, Humans, Muscle, Skeletal, metabolism, Obesity, genetics, surgery, Promoter Regions, Genetic, Protein-Serine-Threonine Kinases, Sequence Analysis, DNA, Transcription Factors, Transcription Initiation Site, Transcriptome, Weight Loss

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA methylation provides a mechanism by which environmental factors can control insulin sensitivity in obesity. Here, we assessed DNA methylation in skeletal muscle from obese people before and after Roux-en-Y gastric bypass (RYGB). Obesity was associated with altered expression of a subset of genes enriched in metabolic process and mitochondrial function. After weight loss, the expression of the majority of the identified genes was normalized to levels observed in normal-weight, healthy controls. Among the 14 metabolic genes analyzed, promoter methylation of 11 genes was normalized to levels observed in the normal-weight, healthy subjects. Using bisulfite sequencing, we show that promoter methylation of PGC-1α and PDK4 is altered with obesity and restored to nonobese levels after RYGB-induced weight loss. A genome-wide DNA methylation analysis of skeletal muscle revealed that obesity is associated with hypermethylation at CpG shores and exonic regions close to transcription start sites. Our results provide evidence that obesity and RYGB-induced weight loss have a dynamic effect on the epigenome. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article