32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AFLP analysis reveals a lack of phylogenetic structure within Solanum section Petota

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The secondary genepool of our modern cultivated potato ( Solanum tuberosum L.) consists of a large number of tuber-bearing wild Solanum species under Solanum section Petota. One of the major taxonomic problems in section Petota is that the series classification (as put forward by Hawkes) is problematic and the boundaries of some series are unclear. In addition, the classification has received only partial cladistic support in all molecular studies carried out to date.

          The aim of the present study is to describe the structure present in section Petota. When possible, at least 5 accessions from each available species and 5 individual plants per accession (totally approx. 5000 plants) were genotyped using over 200 AFLP markers. This resulted in the largest dataset ever constructed for Solanum section Petota. The data obtained are used to evaluate the 21 series hypothesis put forward by Hawkes and the 4 clade hypothesis of Spooner and co-workers.

          Results

          We constructed a NJ tree for 4929 genotypes. For the other analyses, due to practical reasons, a condensed dataset was created consisting of one representative genotype from each available accession. We show a NJ jackknife and a MP jackknife tree. A large part of both trees consists of a polytomy. Some structure is still visible in both trees, supported by jackknife values above 69. We use these branches with >69 jackknife support in the NJ jackknife tree as a basis for informal species groups. The informal species groups recognized are: Mexican diploids, Acaulia, Iopetala, Longipedicellata, polyploid Conicibaccata, diploid Conicibaccata, Circaeifolia, diploid Piurana and tetraploid Piurana.

          Conclusion

          Most of the series that Hawkes and his predecessors designated can not be accepted as natural groups, based on our study. Neither do we find proof for the 4 clades proposed by Spooner and co-workers. A few species groups have high support and their inner structure displays also supported subdivisions, while a large part of the species cannot be structured at all. We believe that the lack of structure is not due to any methodological problem but represents the real biological situation within section Petota.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          AFLP: a new technique for DNA fingerprinting.

          A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Almost forgotten or latest practice? AFLP applications, analyses and advances.

              Amplified fragment length polymorphism (AFLP) DNA fingerprinting is a firmly established molecular marker technique, with broad applications in population genetics, shallow phylogenetics, linkage mapping, parentage analyses, and single-locus PCR marker development. Technical advances have presented new opportunities for data analysis, and recent studies have addressed specific areas of the AFLP technique, including comparison to other genotyping methods, assessment of errors, homoplasy, phylogenetic signal and appropriate analysis techniques. Here we provide a synthesis of these areas and explore new directions for the AFLP technique in the genomic era, with the aim of providing a review that will be applicable to all AFLP-based studies.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2008
                14 May 2008
                : 8
                : 145
                Affiliations
                [1 ]Biosystematics Group, Wageningen University and Research Centre, Wageningen, The Netherlands
                [2 ]Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
                [3 ]Centre for Genetic Resources, Wageningen University and Research Centre, Wageningen, The Netherlands
                [4 ]KEYGENE N.V., Wageningen, The Netherlands
                [5 ]Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
                [6 ]Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
                Article
                1471-2148-8-145
                10.1186/1471-2148-8-145
                2413236
                18479504
                d1ced382-5d46-4033-80ec-056534cac2f8
                Copyright © 2008 Jacobs et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 December 2007
                : 14 May 2008
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article