13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ahsa1 and Hsp90 activity confers more severe craniofacial phenotypes in a zebrafish model of hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          The severity of most human birth defects is highly variable. Our ability to diagnose, treat and prevent defects relies on our understanding of this variability. Mutation of the transcription factor GATA3 in humans causes the highly variable hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR) syndrome. Although named for a triad of defects, individuals with HDR can also exhibit craniofacial defects. Through a forward genetic screen for craniofacial mutants, we isolated a zebrafish mutant in which the first cysteine of the second zinc finger of Gata3 is mutated. Because mutation of the homologous cysteine causes HDR in humans, these zebrafish mutants could be a quick and effective animal model for understanding the role of gata3 in the HDR disease spectrum. We demonstrate that, unexpectedly, the chaperone proteins Ahsa1 and Hsp90 promote severe craniofacial phenotypes in our zebrafish model of HDR syndrome. The strengths of the zebrafish system, including rapid development, genetic tractability and live imaging, make this an important model for variability.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Hsp90 as a capacitor of phenotypic variation.

          Heat-shock protein 90 (Hsp90) chaperones the maturation of many regulatory proteins and, in the fruitfly Drosophila melanogaster, buffers genetic variation in morphogenetic pathways. Levels and patterns of genetic variation differ greatly between obligatorily outbreeding species such as fruitflies and self-fertilizing species such as the plant Arabidopsis thaliana. Also, plant development is more plastic, being coupled to environmental cues. Here we report that, in Arabidopsis accessions and recombinant inbred lines, reducing Hsp90 function produces an array of morphological phenotypes, which are dependent on underlying genetic variation. The strength and breadth of Hsp90's effects on the buffering and release of genetic variation suggests it may have an impact on evolutionary processes. We also show that Hsp90 influences morphogenetic responses to environmental cues and buffers normal development from destabilizing effects of stochastic processes. Manipulating Hsp90's buffering capacity offers a tool for harnessing cryptic genetic variation and for elucidating the interplay between genotypes, environments and stochastic events in the determination of phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A two-color acid-free cartilage and bone stain for zebrafish larvae.

            Traditionally, cartilage is stained by alcian blue using acidic conditions to differentiate tissue staining. The acidic conditions are problematic when one wishes to stain the same specimen for mineralized bone with alizarin red, because acid demineralizes bone, which negatively affects bone staining. We have developed an acid-free method to stain cartilage and bone simultaneously in zebrafish larvae. This method has the additional advantage that PCR genotyping of stained specimens is possible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Validation of Zebrafish ( Danio rerio ) Reference Genes for Quantitative Real-time RT-PCR Normalization

              Abstract The normalization of quantitative real time RT-PCR (qRT-PCR) is important to obtain accurate gene expression data. The most common method for qRT-PCR normalization is to use reference, or house keeping genes. However, there is emerging evidence that even reference genes can be regulated under different conditions. qRT-PCR has only recently been used in terms of zebrafish gene expression studies and there is no validated set of reference genes. This study characterizes the expression of nine possible reference genes during zebrafish embryonic development and in a zebrafish tissue panel. All nine reference genes exhibited variable expression. The β-actin, EF1α and Rpl13α genes comprise a validated reference gene panel for zebrafish developmental time course studies, and the EF1α, Rpl13α and 18S rRNA genes are more suitable as a reference gene panel for zebrafish tissue analysis. Importantly, the zebrafish GAPDH gene appears unsuitable as reference gene for both types of studies.
                Bookmark

                Author and article information

                Journal
                Dis Model Mech
                Dis Model Mech
                dmm
                DMM
                Disease Models & Mechanisms
                The Company of Biologists Limited
                1754-8403
                1754-8411
                September 2013
                29 May 2013
                : 6
                : 5
                : 1285-1291
                Affiliations
                [1 ]Department of Molecular and Cell and Developmental Biology, Institute for Cellular and Molecular Biology, Patterson 522, University of Texas at Austin, Austin, TX 78713, USA
                [2 ]School of Life Science, Peking University, 5 Summer Palace Road, Beijing 100871, China
                Author notes
                [*]

                These authors contributed equally to this work

                []Author for correspondence ( eberhart@ 123456austin.utexas.edu )
                Article
                0061285
                10.1242/dmm.011965
                3759348
                23720234
                d1d38fe3-e2e7-4451-a307-232c2ec7d06f
                © 2013. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 31 January 2013
                : 27 May 2013
                Categories
                Research Report
                Custom metadata
                TIB

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article