• Record: found
  • Abstract: found
  • Article: not found

Inhibition of Methylcholanthrene-induced Carcinogenesis by an Interferon γ Receptor–dependent Foreign Body Reaction

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      The foreign body reaction is one of the oldest host defense mechanisms against tissue damage which involves inflammation, scarring, and encapsulation. The chemical carcinogen methylcholanthrene (MCA) induces fibrosarcoma and tissue damage in parallel at the injection site. Tumor development induced by MCA but not due to p53-deficiency is increased in interferon-γ receptor (IFN-γR)–deficient mice. In the absence of IFN-γR, MCA diffusion and DNA damage of surrounding cells is increased. Locally produced IFN-γ induces the formation of a fibrotic capsule. Encapsulated MCA can persist virtually life-long in mice without inducing tumors. Together, the foreign body reaction against MCA prevents malignant transformation, probably by reducing DNA damage. This mechanism is more efficient in the presence of IFN-γR. Our results indicates that inflammation and scarring, both suspected to contribute to malignancy, prevent cancer in certain situations.

      Related collections

      Most cited references 57

      • Record: found
      • Abstract: found
      • Article: not found

      IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity.

      Lymphocytes were originally thought to form the basis of a 'cancer immunosurveillance' process that protects immunocompetent hosts against primary tumour development, but this idea was largely abandoned when no differences in primary tumour development were found between athymic nude mice and syngeneic wild-type mice. However, subsequent observations that nude mice do not completely lack functional T cells and that two components of the immune system-IFNgamma and perforin-help to prevent tumour formation in mice have led to renewed interest in a tumour-suppressor role for the immune response. Here we show that lymphocytes and IFNgamma collaborate to protect against development of carcinogen-induced sarcomas and spontaneous epithelial carcinomas and also to select for tumour cells with reduced immunogenicity. The immune response thus functions as an effective extrinsic tumour-suppressor system. However, this process also leads to the immunoselection of tumour cells that are more capable of surviving in an immunocompetent host, which explains the apparent paradox of tumour formation in immunologically intact individuals.
        • Record: found
        • Abstract: found
        • Article: not found

        Cellular responses to interferon-gamma.

         U Boehm,  T Klamp,  J. Howard (1996)
        Interferons are cytokines that play a complex and central role in the resistance of mammalian hosts to pathogens. Type I interferon (IFN-alpha and IFN-beta) is secreted by virus-infected cells. Immune, type II, or gamma-interferon (IFN-gamma) is secreted by thymus-derived (T) cells under certain conditions of activation and by natural killer (NK) cells. Although originally defined as an agent with direct antiviral activity, the properties of IFN-gamma include regulation of several aspects of the immune response, stimulation of bactericidal activity of phagocytes, stimulation of antigen presentation through class I and class II major histocompatibility complex (MHC) molecules, orchestration of leukocyte-endothelium interactions, effects on cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes whose functional significance remains obscure. The implementation of such a variety of effects by a single cytokine is achieved by complex patterns of cell-specific gene regulation: Several IFN-gamma-regulated genes are themselves components of transcription factors. The IFN-gamma response is itself regulated by interaction with responses to other cytokines including IFN-alpha/beta, TNF-alpha, and IL-4. Over 200 genes are now known to be regulated by IFN-gamma and they are listed in a World Wide Web document that accompanies this review. However, much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance. A promising approach to the complexity of the IFN-gamma response is to extend the analysis of the less understood IFN-gamma-regulated genes in terms of molecular programs functional in pathogen resistance.
          • Record: found
          • Abstract: found
          • Article: not found

          Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy

          In human breast carcinomas, overexpression of the macrophage colony–stimulating factor (CSF-1) and its receptor (CSF-1R) correlates with poor prognosis. To establish if there is a causal relationship between CSF-1 and breast cancer progression, we crossed a transgenic mouse susceptible to mammary cancer with mice containing a recessive null mutation in the CSF-1 gene (Csf1op ) and followed tumor progression in wild-type and null mutant mice. The absence of CSF-1 affects neither the incidence nor the growth of the primary tumors but delayed their development to invasive, metastatic carcinomas. Transgenic expression of CSF-1 in the mammary epithelium of both Csf1op/Csf1op and wild-type tumor-prone mice led to an acceleration to the late stages of carcinoma and to a significant increase in pulmonary metastasis. This was associated with an enhanced infiltration of macrophages into the primary tumor. These studies demonstrate that the growth of mammary tumors and the development to malignancy are separate processes and that CSF-1 selectively promotes the latter process. CSF-1 may promote metastatic potential by regulating the infiltration and function of tumor-associated macrophages as, at the tumor site, CSF-1R expression was restricted to macrophages. Our data suggest that agents directed at CSF-1/CSF-1R activity could have important therapeutic effects.

            Author and article information

            [1 ]Institute of Immunology, Free University, Berlin, 12200 Berlin, Germany
            [2 ]Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany
            Author notes

            Address correspondence to Zhihai Qin, Institute of Immunology, Free University, Berlin 12200, Germany. Phone: 49-30-8445-4607; Fax: 49-30-8445-4613; E-mail: zhihai@

            J Exp Med
            The Journal of Experimental Medicine
            The Rockefeller University Press
            3 June 2002
            : 195
            : 11
            : 1479-1490
            Copyright © 2002, The Rockefeller University Press


            inflammation, encapsulation, tissue repair, immune surveillance, tissue damage


            Comment on this article