23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Combined Anisodamine and Neostigmine Treatment on the Inflammatory Response and Liver Regeneration of Obstructive Jaundice Rats after Hepatectomy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background. Cholestasis is associated with high rates of morbidity and mortality in patients undergoing major liver resection. This study aimed to evaluate the effects of a combined anisodamine and neostigmine (Ani+Neo) treatment on the inflammatory response and liver regeneration in rats with obstructive jaundice (OJ) after partial hepatectomy. Materials and Methods. OJ was induced in the rats by bile duct ligation. After 7 days biliary drainage and partial hepatectomy were performed. These rats were assigned to a saline group or an Ani+Neo treatment group. The expressions of inflammatory mediators, liver regeneration, and liver damage were assessed at 48 h after hepatectomy. Results. The mRNA levels of TNF- α, IL-1 β, IL-6, MCP-1, and MIP-1 α, in the remnant livers, and the serum levels of TNF- α and IL-1 β were substantially reduced in the Ani+Neo group compared with saline group ( P < 0.05). The Ani+Neo treatment obviously promoted liver regeneration as indicated by the liver weights and Ki-67 labeling index ( P < 0.05). The serum albumin and γ-GT levels and liver neutrophil infiltration also significantly improved in the Ani+Neo group ( P < 0.05) compared with the saline group. Conclusions. These results demonstrate that the combined anisodamine and neostigmine treatment is able to improve the liver regeneration in rats with OJ by substantially alleviating the inflammatory response.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation.

          The physiological regulation of the immune system encompasses comprehensive anti-inflammatory mechanisms that can be harnessed for the treatment of infectious and inflammatory disorders. Recent studies indicate that the vagal nerve, involved in control of heart rate, hormone secretion and gastrointestinal motility, is also an immunomodulator. In experimental models of inflammatory diseases, vagal nerve stimulation attenuates the production of proinflammatory cytokines and inhibits the inflammatory process. Acetylcholine, the principal neurotransmitter of the vagal nerve, controls immune cell functions via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). From a pharmacological perspective, nicotinic agonists are more efficient than acetylcholine at inhibiting the inflammatory signaling and the production of proinflammatory cytokines. This 'nicotinic anti-inflammatory pathway' may have clinical implications as treatment with nicotinic agonists can modulate the production of proinflammatory cytokines from immune cells. Nicotine has been tested in clinical trials as a treatment for inflammatory diseases such as ulcerative colitis, but the therapeutic potential of this mechanism is limited by the collateral toxicity of nicotine. Here, we review the recent advances that support the design of more specific receptor-selective nicotinic agonists that have anti-inflammatory effects while eluding its collateral toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Liver sinusoidal endothelial cells and liver regeneration.

            Liver sinusoidal endothelial cells (LSECs) have long been noted to contribute to liver regeneration after liver injury. In normal liver, the major cellular source of HGF is the hepatic stellate cell, but after liver injury, HGF expression has been thought to increase markedly in proliferating LSECs. However, emerging data suggest that even after injury, LSEC expression of HGF does not increase greatly. In contrast, bone marrow progenitor cells of LSECs (BM SPCs), which are rich in HGF, are recruited to the liver after injury. This Review examines liver regeneration from the perspective that BM SPCs that have been recruited to the liver, rather than mature LSECs, drive liver regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice.

              Obstruction of the common bile duct in a variety of clinical settings leads to cholestatic liver injury. An important aspect of this injury is hepatic inflammation, with neutrophils as the prominent cell type involved. However, the pathophysiologic role of the infiltrating neutrophils during cholestatic liver injury remains unclear. Therefore, we tested the hypothesis that neutrophils contribute to the overall pathophysiology by using bile duct-ligated (BDL) wild-type animals and mice deficient in the beta(2) integrin CD18. In wild-type animals, neutrophils were activated systemically as indicated by the increased expression of Mac-1 (CD11b/CD18) and L-selectin shedding 3 days after BDL. Histologic evaluation (48 +/- 10% necrosis) and plasma transaminase levels showed severe liver injury. Compared with sham-operated controls (< 10 neutrophils per 20 high-power fields), large numbers of neutrophils were present in livers of BDL mice (425 +/- 64). About 60% of these neutrophils had extravasated into the parenchyma. In addition, a substantial number of extravasated neutrophils were found in the portal tract. In contrast, Mac-1 was not up-regulated and plasma transaminase activities and the area of necrosis (21 +/- 9%) were significantly reduced in CD18-deficient animals. These mice had overall 62% less neutrophils in the liver. In particular, extravasation from sinusoids and portal venules (PV) was reduced by 91% and 47%, respectively. Immunohistochemical staining for chlorotyrosine, a marker of neutrophil-derived oxidant stress, was observed in the parenchyma of BDL wild-type but not CD18-deficient mice. In conclusion, neutrophils aggravated acute cholestatic liver injury after BDL. This inflammatory injury involves CD18-dependent extravasation of neutrophils from sinusoids and reactive oxygen formation.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2014
                12 November 2014
                : 2014
                : 362024
                Affiliations
                Department & Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Chinese PLA Medical College, Beijing 100853, China
                Author notes

                Academic Editor: Limei Qiu

                Author information
                http://orcid.org/0000-0003-2859-9871
                Article
                10.1155/2014/362024
                4244971
                25478569
                d1d50093-cd2a-420d-bd61-38f6f32ad514
                Copyright © 2014 Chong-Hui Li et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 July 2014
                : 11 September 2014
                Categories
                Research Article

                Comments

                Comment on this article