97
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role for DNA Methylation in the Regulation of miR-200c and miR-141 Expression in Normal and Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood.

          Methodology/Principal Findings

          Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2′-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control.

          Conclusions/Significance

          We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          CpG islands in vertebrate genomes.

          Although vertebrate DNA is generally depleted in the dinucleotide CpG, it has recently been shown that some vertebrate genes contain CpG islands, regions of DNA with a high G+C content and a high frequency of CpG dinucleotides relative to the bulk genome. In this study, a large number of sequences of vertebrate genes were screened for the presence of CpG islands. Each CpG island was then analysed in terms of length, nucleotide composition, frequency of CpG dinucleotides, and location relative to the transcription unit of the associated gene. CpG islands were associated with the 5' ends of all housekeeping genes and many tissue-specific genes, and with the 3' ends of some tissue-specific genes. A few genes contained both 5' and 3' CpG islands, separated by several thousand base-pairs of CpG-depleted DNA. The 5' CpG islands extended through 5'-flanking DNA, exons and introns, whereas most of the 3' CpG islands appeared to be associated with exons. CpG islands were generally found in the same position relative to the transcription unit of equivalent genes in different species, with some notable exceptions. The locations of G/C boxes, composed of the sequence GGGCGG or its reverse complement CCGCCC, were investigated relative to the location of CpG islands. G/C boxes were found to be rare in CpG-depleted DNA and plentiful in CpG islands, where they occurred in 3' CpG islands, as well as in 5' CpG islands associated with tissue-specific and housekeeping genes. G/C boxes were located both upstream and downstream from the transcription start site of genes with 5' CpG islands. Thus, G/C boxes appeared to be a feature of CpG islands in general, rather than a feature of the promoter region of housekeeping genes. Two theories for the maintenance of a high frequency of CpG dinucleotides in CpG islands were tested: that CpG islands in methylated genomes are maintained, despite a tendency for 5mCpG to mutate by deamination to TpG+CpA, by the structural stability of a high G+C content alone, and that CpG islands associated with exons result from some selective importance of the arginine codon CGX. Neither of these theories could account for the distribution of CpG dinucleotides in the sequences analysed. Possible functions of CpG islands in transcriptional and post-transcriptional regulation of gene expression were discussed, and were related to theories for the maintenance of CpG islands as "methylation-free zones" in germline DNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Establishment and characterization of a human prostatic carcinoma cell line (PC-3).

            The establishment, characterization, and tumorigenicity of a new epithelial cell line (PC-3) from a human prostatic adenocarcinoma metastatic to bone is reported. The cultured cells show anchorage-independent growth in both monolayers and in soft agar suspension and produce subcutaneous tumors in nude mice. Culture of the transplanted tumor yielded a human cell line with characteristics identical to those used initially to produce the tumor. PC-3 has a greatly reduced dependence upon serum for growth when compared to normal prostatic epithelial cells and does not respond to androgens, glucocorticoids, or epidermal or fibroblast gowth factors. Karyotypic analysis by quinacrine banding revealed the cells to be completely aneuploid with a modal chromosome number in the hypotriploid range. At least 10 distinctive marker chromosomes were identified. The overall karyotype as well as the marker chromosomes are distinct from those of the HeLa cell. Electron microscopic studies revealed many features common to neoplastic cells of epithelial origin including numerous microvilli, junctional complexes, abnormal nuclei and nucleoli, abnormal mitochondria, annulate lamellae, and lipoidal bodies. Overall, the functional and morphologic characteristics of PC-3 are those of a poorly-differentiated adenocarcinoma. These cells should be useful in investigating the biochemical changes in advanced prostatic cancer cells and in assessing their response to chemotherapeutic agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA expression profiles in serous ovarian carcinoma.

              Although microRNAs have recently been recognized as riboregulators of gene expression, little is known about microRNA expression profiles in serous ovarian carcinoma. We assessed the expression of microRNA and the association between microRNA expression and the prognosis of serous ovarian carcinoma. Twenty patients diagnosed with serous ovarian carcinoma and eight patients treated for benign uterine disease between December 2000 and September 2003 were enrolled in this study. The microRNA expression profiles were examined using DNA microarray and Northern blot analyses. Several microRNAs were differentially expressed in serous ovarian carcinoma compared with normal ovarian tissues, including miR-21, miR-125a, miR-125b, miR-100, miR-145, miR-16, and miR-99a, which were each differentially expressed in >16 patients. In addition, the expression levels of some microRNAs were correlated with the survival in patients with serous ovarian carcinoma. Higher expression of miR-200, miR-141, miR-18a, miR-93, and miR-429, and lower expression of let-7b, and miR-199a were significantly correlated with a poor prognosis (P < 0.05). Our results indicate that dysregulation of microRNAs is involved in ovarian carcinogenesis and associated with the prognosis of serous ovarian carcinoma.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                13 January 2010
                : 5
                : 1
                : e8697
                Affiliations
                [1 ]Arizona Cancer Center, The University of Arizona, Tucson, Arizona, United States of America
                [2 ]Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, United States of America
                [3 ]Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
                [4 ]Biology Centre ASCR, v.v.i., Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
                Victor Chang Cardiac Research Institute, Australia
                Author notes

                Conceived and designed the experiments: LV BWF. Performed the experiments: LV TJJ. Analyzed the data: LV TJJ. Contributed reagents/materials/analysis tools: JG RRH AC SD MRS. Wrote the paper: LV MRS BWF.

                Article
                09-PONE-RA-13544R1
                10.1371/journal.pone.0008697
                2805718
                20084174
                d1d69d65-d236-4fc8-8a86-78d0afc5cdbc
                Vrba et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 October 2009
                : 21 December 2009
                Page count
                Pages: 8
                Categories
                Research Article
                Genetics and Genomics/Cancer Genetics
                Genetics and Genomics/Epigenetics
                Molecular Biology/DNA Methylation
                Molecular Biology/Histone Modification
                Oncology/Breast Cancer
                Oncology/Prostate Cancer

                Uncategorized
                Uncategorized

                Comments

                Comment on this article