22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bibliometric analysis of worldwide publications on multi-, extensively, and totally drug – resistant tuberculosis (2006–2015)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The year 2015 marked the end of United Nations Millennium Development Goals which was aimed at halting and reversing worldwide tuberculosis (TB). The emergence of drug resistance is a major challenge for worldwide TB control. The aim of this study was to give a bibliometric overview of publications on multi-, extensively, and totally drug-resistant TB.

          Methods

          Scopus database was used to retrieve articles on multidrug resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) tuberculosis for the study period (2006–2015). The number of publications, top productive countries and institutions, citation analysis, co-authorships, international collaboration, active authors, and active journals were retrieved and analyzed.

          Results

          A total of 2260 journal articles were retrieved. The mean ± SD citations per article was 7.04 ± 16.0. The h-index of retrieved data was 76. The number of publications showed a three – fold increase over the study period compared with less than two – fold increase in tuberculosis research during the same study period. Stratified by number of publications, the United States of America ranked first while Switzerland ranked first in productivity per 100 million people, and South Africa ranked first in productivity stratified per one trillion Gross Domestic Product. Three of the High Burden Countries (HBC) MDR-TB (India, China, and South Africa) were present in top productive countries. High percentage of international collaboration was seen among most HBC MDR-TB. Except for Plos One journal, most active journals in publishing articles on MDR, XDR, TDR-TB were in infection – related fields and in general medicine. Top 20 cited articles were published in prestigious journal such as Lancet and New England Journal of Medicine. The themes in top 20 cited articles were diverse, ranging from molecular biology, diagnostic tools, co-infection with HIV, and results of new anti-TB drugs.

          Conclusion

          Publications on MDR, XDR and TDR – TB are increasing in the past decade. International collaboration was common. Many low resourced African and Asian countries will benefit from research leading to new diagnostic and screening technology of TB. The exchange of expertise, ideas and technology is of paramount importance in this field.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis.

          Although progress has been made to reduce global incidence of drug-susceptible tuberculosis, the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis during the past decade threatens to undermine these advances. However, countries are responding far too slowly. Of the estimated 440,000 cases of MDR tuberculosis that occurred in 2008, only 7% were identified and reported to WHO. Of these cases, only a fifth were treated according to WHO standards. Although treatment of MDR and XDR tuberculosis is possible with currently available diagnostic techniques and drugs, the treatment course is substantially more costly and laborious than for drug-susceptible tuberculosis, with higher rates of treatment failure and mortality. Nonetheless, a few countries provide examples of how existing technologies can be used to reverse the epidemic of MDR tuberculosis within a decade. Major improvements in laboratory capacity, infection control, performance of tuberculosis control programmes, and treatment regimens for both drug-susceptible and drug-resistant disease will be needed, together with a massive scale-up in diagnosis and treatment of MDR and XDR tuberculosis to prevent drug-resistant strains from becoming the dominant form of tuberculosis. New diagnostic tests and drugs are likely to become available during the next few years and should accelerate control of MDR and XDR tuberculosis. Equally important, especially in the highest-burden countries of India, China, and Russia, will be a commitment to tuberculosis control including improvements in national policies and health systems that remove financial barriers to treatment, encourage rational drug use, and create the infrastructure necessary to manage MDR tuberculosis on a national scale. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            National survey of drug-resistant tuberculosis in China.

            The available information on the epidemic of drug-resistant tuberculosis in China is based on local or regional surveys. In 2007, we carried out a national survey of drug-resistant tuberculosis in China. We estimated the proportion of tuberculosis cases in China that were resistant to drugs by means of cluster-randomized sampling of tuberculosis cases in the public health system and testing for resistance to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and streptomycin and the second-line drugs ofloxacin and kanamycin. We used the results from this survey and published estimates of the incidence of tuberculosis to estimate the incidence of drug-resistant tuberculosis. Information from patient interviews was used to identify factors linked to drug resistance. Among 3037 patients with new cases of tuberculosis and 892 with previously treated cases, 5.7% (95% confidence interval [CI], 4.5 to 7.0) and 25.6% (95% CI, 21.5 to 29.8), respectively, had multidrug-resistant (MDR) tuberculosis (defined as disease that was resistant to at least isoniazid and rifampin). Among all patients with tuberculosis, approximately 1 of 4 had disease that was resistant to isoniazid, rifampin, or both, and 1 of 10 had MDR tuberculosis. Approximately 8% of the patients with MDR tuberculosis had extensively drug-resistant (XDR) tuberculosis (defined as disease that was resistant to at least isoniazid, rifampin, ofloxacin, and kanamycin). In 2007, there were 110,000 incident cases (95% CI, 97,000 to 130,000) of MDR tuberculosis and 8200 incident cases (95% CI, 7200 to 9700) of XDR tuberculosis. Most cases of MDR and XDR tuberculosis resulted from primary transmission. Patients with multiple previous treatments who had received their last treatment in a tuberculosis hospital had the highest risk of MDR tuberculosis (adjusted odds ratio, 13.3; 95% CI, 3.9 to 46.0). Among 226 previously treated patients with MDR tuberculosis, 43.8% had not completed their last treatment; most had been treated in the hospital system. Among those who had completed treatment, tuberculosis developed again in most of the patients after their treatment in the public health system. China has a serious epidemic of drug-resistant tuberculosis. MDR tuberculosis is linked to inadequate treatment in both the public health system and the hospital system, especially tuberculosis hospitals; however, primary transmission accounts for most cases. (Funded by the Chinese Ministry of Health.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran.

              The study documented the emergence of new forms of resistant bacilli (totally drug-resistant [TDR] or super extensively drug-resistant [XDR] tuberculosis [TB] strains) among patients with multidrug-resistant TB (MDR-TB). Susceptibility testing against first- and second-line drugs was performed on isolated Mycobacterium tuberculosis strains. Subsequently, the strains identified as XDR or TDR M tuberculosis were subjected to spoligotyping and variable numbers of tandem repeats (VNTR). Of 146 MDR-TB strains, 8 XDR isolates (5.4%) and 15 TDR isolates (10.3%) were identified. The remaining strains were either susceptible (67%) or had other resistant patterns (20%). Overall, the median of treatments and drugs previously received by MDR-TB patients was two courses of therapy of 15 months' duration with five drugs (isoniazid [INH], rifampicin [RF], streptomycin, ethambutol, and pyrazinamide). The median of in vitro drug resistance for all studied cases was INH and RF. The XDR or TDR strains were collected from both immigrants (Afghan, 30.4%; Azerbaijani, 8.6%; Iraqi, 4.3%) and Iranian (56.5%) MDR-TB cases. In such cases, the smear and cultures remained positive after 18 months of medium treatment with second-line drugs (ethionamide, para-aminosalicylic acid, cycloserine, ofloxacin, amikacin, and ciprofloxacin). Spoligotyping revealed Haarlem (39.1%), Beijing (21.7%), EAI (21.7%), and CAS (17.3%) superfamilies of M tuberculosis. These superfamilies had different VNTR profiles, which eliminated the recent transmission among MDR-TB cases. The isolation of TDR strains from MDR-TB patients from different regional countries is alarming and underlines the possible dissemination of such strains in Asian countries. Now the next question is how one should control and treat such cases.
                Bookmark

                Author and article information

                Contributors
                waleedsweileh@yahoo.com , waleedsweileh@najah.edu
                aabutaha@najah.edu
                ansam@najah.edu
                alkhalil@najah.edu
                samahjabi@yahoo.com
                saedzyoud@yahoo.com
                Journal
                Multidiscip Respir Med
                Multidiscip Respir Med
                Multidisciplinary Respiratory Medicine
                BioMed Central (London )
                1828-695X
                2049-6958
                11 January 2017
                11 January 2017
                2016
                : 11
                : 45
                Affiliations
                [1 ]Department of Pharmacology/ Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
                [2 ]Department of Anatomy, Biochemistry and Genetics, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
                [3 ]Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
                Article
                81
                10.1186/s40248-016-0081-0
                5225617
                28096979
                d1e43fbd-1afa-4028-b882-57c52b6ae002
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 August 2016
                : 25 November 2016
                Categories
                Original Research Article
                Custom metadata
                © The Author(s) 2016

                Respiratory medicine
                tuberculosis,drug resistance,bibliometrics
                Respiratory medicine
                tuberculosis, drug resistance, bibliometrics

                Comments

                Comment on this article