+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          The amyloid β-protein (Aβ) is believed to be the key mediator of Alzheimer's disease (AD) pathology. Aβ is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities.

          Methodology/Principal Findings

          Here, we provide data supporting an in vivo function for Aβ as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ and LL-37, an archetypical human AMP. Findings reveal that Aβ exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ levels. Consistent with Aβ-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ antibodies.


          Our findings suggest Aβ is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ-mediated pathology and has important implications for ongoing and future AD treatment strategies.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.

          Apolipoprotein E is immunochemically localized to the senile plaques, vascular amyloid, and neurofibrillary tangles of Alzheimer disease. In vitro, apolipoprotein E in cerebrospinal fluid binds to synthetic beta A4 peptide (the primary constituent of the senile plaque) with high avidity. Amino acids 12-28 of the beta A4 peptide are required. The gene for apolipoprotein E is located on chromosome 19q13.2, within the region previously associated with linkage of late-onset familial Alzheimer disease. Analysis of apolipoprotein E alleles in Alzheimer disease and controls demonstrated that there was a highly significant association of apolipoprotein E type 4 allele (APOE-epsilon 4) and late-onset familial Alzheimer disease. The allele frequency of the APOE-epsilon 4 in 30 random affected patients, each from a different Alzheimer disease family, was 0.50 +/- 0.06; the allele frequency of APOE-epsilon 4 in 91 age-matched unrelated controls was 0.16 +/- 0.03 (Z = 2.44, P = 0.014). A functional role of the apolipoprotein E-E4 isoform in the pathogenesis of late-onset familial Alzheimer disease is suggested.
            • Record: found
            • Abstract: found
            • Article: not found

            Cathelicidins, multifunctional peptides of the innate immunity.

            Cathelicidins comprise a family of mammalian proteins containing a C-terminal cationic antimicrobial domain that becomes active after being freed from the N-terminal cathelin portion of the holoprotein. Many other members of this family have been identified since the first cathelicidin sequences were reported 10 years ago. The mature peptides generally show a wide spectrum of antimicrobial activity and, more recently, some of them have also been found to exert other biological activities. The human cathelicidin peptide LL-37 is chemotactic for neutrophils, monocytes, mast cells, and T cells; induces degranulation of mast cells; alters transcriptional responses in macrophages; stimulates wound vascularization and re-epithelialization of healing skin. The porcine PR-39 has also been involved in a variety of processes, including promotion of wound repair, induction of angiogenesis, neutrophils chemotaxis, and inhibition of the phagocyte NADPH oxidase activity, whereas the bovine BMAP-28 induces apoptosis in transformed cell lines and activated lymphocytes and may thus help with clearance of unwanted cells at inflammation sites. These multiple actions provide evidence for active participation of cathelicidin peptides in the regulation of the antimicrobial host defenses.
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE.

              Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause early-onset autosomal-dominant AD (APP, PSEN1, and PSEN2(1-4)) or to increase susceptibility for late-onset AD (APOE5). However, the heritability of late-onset AD is as high as 80%, (6) and much of the phenotypic variance remains unexplained to date. We performed a genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals (p = 5.7 x 10(-14)) was elicited by SNP rs4420638 and probably reflects APOE-epsilon4, which maps 11 kb proximal (r2 = 0.78). The other four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 families. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP (rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele in GWA data generated in an independent sample of approximately 1,400 AD cases and controls (p = 0.04). Although the precise identity of the underlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD gene that, like APOE-epsilon4, primarily acts as a modifier of onset age.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                3 March 2010
                : 5
                : 3
                [1 ]Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
                [2 ]Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [3 ]Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
                [4 ]Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
                [5 ]Harvard Medical School, Boston, Massachusetts, United States of America
                [6 ]Molecular Aging and Developmental Laboratory, Photonics Center, College of Engineering, Boston University School of Medicine, Boston University, Boston, Massachusetts, United States of America
                [7 ]Boston University Alzheimer's Disease Center, Boston University, Boston, Massachusetts, United States of America
                Mental Health Research Institute of Victoria, Australia
                Author notes

                Conceived and designed the experiments: SJS JEK RET RDM. Performed the experiments: SJS KJW SMT MAB. Analyzed the data: SJS JEK KJW LEG SD RET RDM. Contributed reagents/materials/analysis tools: MI BTH LEG. Wrote the paper: SJS JEK RET RDM.

                Soscia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 10
                Research Article
                Immunology/Innate Immunity
                Microbiology/Innate Immunity
                Neurological Disorders/Alzheimer Disease



                Comment on this article