15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular identification and phylogenetic analysis of Lactobacillus and Bifidobacterium spp. isolated from gut of honeybees ( Apis mellifera) from West Azerbaijan, Iran

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) and phylogenetic analysis were used for molecular identification of lactic acid bacteria (LABs) isolated from Apis mellifera. Eighteen honeybee workers were collected from three different apiaries in West Azerbaijan. LABs from the gut of honeybees were isolated and cultured using routine biochemical procedures. Genomic DNA was extracted from LABs and a fragment of 1540 bp in size of 16S rRNA gene was amplified. PCR products were digested using HinfI endonuclease and digested products with different RFLP patterns were subjected to nucleotide sequencing and phylogenetic analysis. The results revealed that Lactobacillus and Bifidobacteria spp. are were the most abundant LABs in honeybee gut. Phylogenetic analysis showed that both Lactobacillus and Bifidobacterium were closely clustered with high similarity percentage with the same bacteria isolated from honeybees’ gut elsewhere. It was concluded that LABs isolated from honeybees had low sequence divergence in comparison with LABs isolated from other sources such as dairy products.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.

           S. Aljanabi (1997)
          A very simple, fast, universally applicable and reproducible method to extract high quality megabase genomic DNA from different organisms is described. We applied the same method to extract high quality complex genomic DNA from different tissues (wheat, barley, potato, beans, pear and almond leaves as well as fungi, insects and shrimps' fresh tissue) without any modification. The method does not require expensive and environmentally hazardous reagents and equipment. It can be performed even in low technology laboratories. The amount of tissue required by this method is approximately 50-100 mg. The quantity and the quality of the DNA extracted by this method is high enough to perform hundreds of PCR-based reactions and also to be used in other DNA manipulation techniques such as restriction digestion, Southern blot and cloning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Distinctive Gut Microbiota of Honey Bees Assessed Using Deep Sampling from Individual Worker Bees

            Surveys of 16S rDNA sequences from the honey bee, Apis mellifera, have revealed the presence of eight distinctive bacterial phylotypes in intestinal tracts of adult worker bees. Because previous studies have been limited to relatively few sequences from samples pooled from multiple hosts, the extent of variation in this microbiota among individuals within and between colonies and locations has been unclear. We surveyed the gut microbiota of 40 individual workers from two sites, Arizona and Maryland USA, sampling four colonies per site. Universal primers were used to amplify regions of 16S ribosomal RNA genes, and amplicons were sequenced using 454 pyrotag methods, enabling analysis of about 330,000 bacterial reads. Over 99% of these sequences belonged to clusters for which the first blastn hits in GenBank were members of the known bee phylotypes. Four phylotypes, one within Gammaproteobacteria (corresponding to “Candidatus Gilliamella apicola”) one within Betaproteobacteria (“Candidatus Snodgrassella alvi”), and two within Lactobacillus, were present in every bee, though their frequencies varied. The same typical bacterial phylotypes were present in all colonies and at both sites. Community profiles differed significantly among colonies and between sites, mostly due to the presence in some Arizona colonies of two species of Enterobacteriaceae not retrieved previously from bees. Analysis of Sanger sequences of rRNA of the Snodgrassella and Gilliamella phylotypes revealed that single bees contain numerous distinct strains of each phylotype. Strains showed some differentiation between localities, especially for the Snodgrassella phylotype.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees

              Lactic acid bacteria (LAB) are well recognized beneficial host-associated members of the microbiota of humans and animals. Yet LAB-associations of invertebrates have been poorly characterized and their functions remain obscure. Here we show that honeybees possess an abundant, diverse and ancient LAB microbiota in their honey crop with beneficial effects for bee health, defending them against microbial threats. Our studies of LAB in all extant honeybee species plus related apid bees reveal one of the largest collections of novel species from the genera Lactobacillus and Bifidobacterium ever discovered within a single insect and suggest a long (>80 mya) history of association. Bee associated microbiotas highlight Lactobacillus kunkeei as the dominant LAB member. Those showing potent antimicrobial properties are acquired by callow honey bee workers from nestmates and maintained within the crop in biofilms, though beekeeping management practices can negatively impact this microbiota. Prophylactic practices that enhance LAB, or supplementary feeding of LAB, may serve in integrated approaches to sustainable pollinator service provision. We anticipate this microbiota will become central to studies on honeybee health, including colony collapse disorder, and act as an exemplar case of insect-microbe symbiosis.
                Bookmark

                Author and article information

                Journal
                Vet Res Forum
                Vet Res Forum
                VRF
                Veterinary Research Forum
                Urmia University Press (Urmia, Iran )
                2008-8140
                2322-3618
                Autumn 2016
                15 December 2016
                : 7
                : 4
                : 287-294
                Affiliations
                [1 ]Private Veterinary Practitioner, Mahabad, Iran
                [2 ]Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
                [3 ]Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
                Author notes
                [* ]Correspondence: Karim Mardani. DVM, PhD , Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. E-mail: k.mardani@urmia.ac.ir
                Article
                vrf-7-287
                5251350
                © 2016 Urmia University. All rights reserved.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Original Article

                Comments

                Comment on this article