75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Aberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies ( i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy.

          Results

          We observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia.

          Conclusions

          Thus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of c-MYC as a target of the APC pathway.

          The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer cachexia: mediators, signaling, and metabolic pathways.

            Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Targeting metabolic transformation for cancer therapy.

              Cancer therapy has long relied on the rapid proliferation of tumour cells for effective treatment. However, the lack of specificity in this approach often leads to undesirable side effects. Many reports have described various 'metabolic transformation' events that enable cancer cells to survive, suggesting that metabolic pathways might be good targets. There are currently several drugs under development or in clinical trials that are based on specifically targeting the altered metabolic pathways of tumours. This Review highlights pathways against which there are already drugs in different stages of development and also discusses additional druggable targets.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cancer Metab
                Cancer Metab
                Cancer & Metabolism
                BioMed Central
                2049-3002
                2014
                1 September 2014
                : 2
                : 18
                Affiliations
                [1 ]The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
                [2 ]Department of Chemistry, University of Nebraska—Lincoln, Lincoln, NE 68588, USA
                [3 ]Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
                [4 ]Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
                [5 ]Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
                [6 ]Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
                [7 ]Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
                [8 ]Department of Genetic Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
                Article
                2049-3002-2-18
                10.1186/2049-3002-2-18
                4165433
                25228990
                d20bdf48-7b10-4c8d-be78-0da884be000d
                Copyright © 2014 Shukla et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 23 January 2014
                : 11 August 2014
                Categories
                Research

                pancreatic cancer,cancer cachexia,cancer metabolism,ketone bodies

                Comments

                Comment on this article