6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characteristics of the urinary microbiome in kidney stone patients with hypertension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Kidney stone disease (KSD) is more common in individuals with hypertension (HTN) than in individuals with normotension (NTN). Urinary dysbiosis is associated with urinary tract disease and systemic diseases. However, the role of the urinary microbiome in KSD complicated with HTN remains unclear.

          Methods

          This study investigated the relationship between the pelvis urinary microbiome and blood pressure (BP) in patients with KSD co-occurring with HTN (KSD-HTN) and healthy controls (HC) by conducting 16S rRNA gene sequencing of bacteria in urine samples. The urine samples were collected (after bladder disinfection) from 50 patients with unilateral kidney calcium stones and NTN (n = 12), prehypertension (pHTN; n = 11), or HTN (n = 27), along with 12 HCs.

          Results

          Principal coordinates analysis showed that there were significant differences in the urinary microbiomes not only between KSD patients and HCs but also between KSD-pHTN or KSD-HTN patients and KSD-NTN patients. Gardnerella dominated in HCs, Staphylococcus dominated in KSD-NTN patients and Sphingomonas dominated in both KSD-pHTN and KSD-HTN patients. The abundance of several genera including Acidovorax, Gardnerella and Lactobacillus was correlated with BP. Adherens junction and nitrogen and nucleotide metabolism pathways, among others, were associated with changes in BP.

          Conclusions

          The findings suggest that patients with KSD complicated with HTN have a unique urinary microbiome profile and that changes in the microbiome may reflect disease progression and may be useful to monitor response to treatments.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Alterations of the Gut Microbiome in Hypertension

            Introduction: Human gut microbiota is believed to be directly or indirectly involved in cardiovascular diseases and hypertension. However, the identification and functional status of the hypertension-related gut microbe(s) have not yet been surveyed in a comprehensive manner. Methods: Here we characterized the gut microbiome in hypertension status by comparing fecal samples of 60 patients with primary hypertension and 60 gender-, age-, and body weight-matched healthy controls based on whole-metagenome shotgun sequencing. Results: Hypertension implicated a remarkable gut dysbiosis with significant reduction in within-sample diversity and shift in microbial composition. Metagenome-wide association study (MGWAS) revealed 53,953 microbial genes that differ in distribution between the patients and healthy controls (false discovery rate, 0.05) and can be grouped into 68 clusters representing bacterial species. Opportunistic pathogenic taxa, such as, Klebsiella spp., Streptococcus spp., and Parabacteroides merdae were frequently distributed in hypertensive gut microbiome, whereas the short-chain fatty acid producer, such as, Roseburia spp. and Faecalibacterium prausnitzii, were higher in controls. The number of hypertension-associated species also showed stronger correlation to the severity of disease. Functionally, the hypertensive gut microbiome exhibited higher membrane transport, lipopolysaccharide biosynthesis and steroid degradation, while in controls the metabolism of amino acid, cofactors and vitamins was found to be higher. We further provided the microbial markers for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC) of 0.78, demonstrating the potential of gut microbiota in prediction of hypertension. Conclusion: These findings represent specific alterations in microbial diversity, genes, species and functions of the hypertensive gut microbiome. Further studies on the causality relationship between hypertension and gut microbiota will offer new prospects for treating and preventing the hypertension and its associated diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Culturing of female bladder bacteria reveals an interconnected urogenital microbiota

              Metagenomic analyses have indicated that the female bladder harbors an indigenous microbiota. However, there are few cultured reference strains with sequenced genomes available for functional and experimental analyses. Here we isolate and genome-sequence 149 bacterial strains from catheterized urine of 77 women. This culture collection spans 78 species, representing approximately two thirds of the bacterial diversity within the sampled bladders, including Proteobacteria, Actinobacteria, and Firmicutes. Detailed genomic and functional comparison of the bladder microbiota to the gastrointestinal and vaginal microbiotas demonstrates similar vaginal and bladder microbiota, with functional capacities that are distinct from those observed in the gastrointestinal microbiota. Whole-genome phylogenetic analysis of bacterial strains isolated from the vagina and bladder in the same women identifies highly similar Escherichia coli, Streptococcus anginosus, Lactobacillus iners, and Lactobacillus crispatus, suggesting an interlinked female urogenital microbiota that is not only limited to pathogens but is also characteristic of health-associated commensals.
                Bookmark

                Author and article information

                Contributors
                lvlongxian@aliyun.com
                xugongxixi@sohu.com
                n.feng@njmu.edu.cn
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                17 March 2020
                17 March 2020
                2020
                : 18
                : 130
                Affiliations
                [1 ]GRID grid.258151.a, ISNI 0000 0001 0708 1323, Wuxi School of Medicine, , Jiangnan University, ; Wuxi, Jiangsu China
                [2 ]GRID grid.89957.3a, ISNI 0000 0000 9255 8984, Department of Urology, Affiliated Wuxi No. 2 Hospital, , Nanjing Medical University, ; Wuxi, Jiangsu China
                [3 ]GRID grid.258151.a, ISNI 0000 0001 0708 1323, State Key Laboratory of Food Science and Technology and School of Food Science and Technology, , Jiangnan University, ; Wuxi, Jiangsu China
                [4 ]GRID grid.13402.34, ISNI 0000 0004 1759 700X, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, , Zhejiang University, ; Hangzhou, Zhejiang China
                Article
                2282
                10.1186/s12967-020-02282-3
                7079538
                32183836
                d2103910-dec4-4f15-b126-bb8497f1838f
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 19 October 2019
                : 26 February 2020
                Funding
                Funded by: Graduate Research and Innovation Projects of Jiangsu Province (CN)
                Award ID: CXTDA2017047
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Medicine
                kidney pelvis,kidney stone disease,microbiome,hypertension,prehypertension,urinary bacteria
                Medicine
                kidney pelvis, kidney stone disease, microbiome, hypertension, prehypertension, urinary bacteria

                Comments

                Comment on this article