26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bacterial microcompartments

      , , , ,
      Nature Reviews Microbiology
      Springer Nature
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Bacterial microcompartments (BMCs) are self-assembling organelles that consist of an enzymatic core that is encapsulated by a selectively permeable protein shell. The potential to form BMCs is widespread, found across the Kingdom Bacteria. BMCs have crucial roles in carbon dioxide fixation in autotrophs and the catabolism of organic substrates in heterotrophs. They contribute to the metabolic versatility of bacteria, providing a competitive advantage in specific environmental niches. Although BMCs were first visualized more than sixty years ago, it is mainly in the last decade that progress has been made in understanding their metabolic diversity and the structural basis of their assembly and function. This progress has not only heightened our understanding of their role in microbial metabolism but it is also beginning to enable their use in a variety of applications in synthetic biology. In this Review, we focus on recent insights into the structure, assembly, diversity and function of BMCs. </p><p id="P2">Bacterial microcompartments are self-assembling organelles that consist of an enzymatic core that is encapsulated by a selectively permeable protein shell. In this Review, Kerfeld and colleagues discuss recent insights into the structure, assembly, diversity and function of bacterial microcompartments. </p>

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Synthetic protein scaffolds provide modular control over metabolic flux.

          Engineered metabolic pathways constructed from enzymes heterologous to the production host often suffer from flux imbalances, as they typically lack the regulatory mechanisms characteristic of natural metabolism. In an attempt to increase the effective concentration of each component of a pathway of interest, we built synthetic protein scaffolds that spatially recruit metabolic enzymes in a designable manner. Scaffolds bearing interaction domains from metazoan signaling proteins specifically accrue pathway enzymes tagged with their cognate peptide ligands. The natural modularity of these domains enabled us to optimize the stoichiometry of three mevalonate biosynthetic enzymes recruited to a synthetic complex and thereby achieve 77-fold improvement in product titer with low enzyme expression and reduced metabolic load. One of the same scaffolds was used to triple the yield of glucaric acid, despite high titers (0.5 g/l) without the synthetic complex. These strategies should prove generalizeable to other metabolic pathways and programmable for fine-tuning pathway flux.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Intestinal Microbiota Composition Modulates Choline Bioavailability from Diet and Accumulation of the Proatherogenic Metabolite Trimethylamine-N-Oxide

            ABSTRACT Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota.

              Conventional wisdom holds that microbes support their growth in vertebrate hosts by exploiting a large variety of nutrients. We show here that use of a specific nutrient (ethanolamine) confers a marked growth advantage on Salmonella enterica serovar Typhimurium (S. Typhimurium) in the lumen of the inflamed intestine. In the anaerobic environment of the gut, ethanolamine supports little or no growth by fermentation. However, S. Typhimurium is able to use this carbon source by inducing the gut to produce a respiratory electron acceptor (tetrathionate), which supports anaerobic growth on ethanolamine. The gut normally converts ambient hydrogen sulfide to thiosulfate, which it then oxidizes further to tetrathionate during inflammation. Evidence is provided that S. Typhimurium's growth advantage in an inflamed gut is because of its ability to respire ethanolamine, which is released from host tissue, but is not utilizable by competing bacteria. By inducing intestinal inflammation, S. Typhimurium sidesteps nutritional competition and gains the ability to use an abundant simple substrate, ethanolamine, which is provided by the host.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Microbiology
                Nat Rev Micro
                Springer Nature
                1740-1526
                1740-1534
                March 5 2018
                March 5 2018
                :
                :
                Article
                10.1038/nrmicro.2018.10
                6022854
                29503457
                d2159b03-3d56-40ff-8f9f-12804c251e08
                © 2018
                History

                Comments

                Comment on this article