66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adaptation changes in dynamic postural control and contingent negative variation during repeated transient forward translation in the elderly

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Adaptation changes in postural control and contingent negative variation (CNV) for the elderly were investigated during repeated forward floor translation.

          Methods

          Fifteen healthy elderly persons, living in the suburban area of Kanazawa City, Japan, underwent backward postural disturbance by a forward-floor translation (S2) 2 s after an auditory warning signal (S1). A set with 20 trials was repeated until a negative peak of late CNV was recognized in the 600-ms period before S2, and the last set was defined as the final set. Electroencephalograms, center of foot pressure in the anteroposterior direction (CoPap), and electromyograms of postural muscles were analyzed.

          Results

          CoPap displacement generated by the floor translation was significantly decreased until the twelfth trial in the first set, and mean CoPap displacement was smaller in the second and final sets than in the first set. The mean displacement was significantly smaller in the final set than the previous set. A late CNV with a negative peak was not recognized in the first and second sets. However, most subjects (13/15) showed a negative peak by the fourth set, when the late CNV started to increase negatively from about 1,000 ms after S1 and peaked at about 300 ms before S2. At about 160 ms before the CNV peak, the CoPap forward shift started. The increase in timing of the gastrocnemius activity related to the CoPap shift was significantly correlated with the CNV peak timing ( r = 0.64). After S2, peak amplitudes of the anterior postural muscles were significantly decreased in the final set compared to the first set.

          Conclusions

          It was demonstrated that even for the elderly, with so many repetitions of postural disturbance, a late CNV with a negative peak was recognized, leading to accurate postural preparation. This suggests the improvement of frontal lobe function (e.g., anticipatory attention and motor preparation) in the elderly.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Central programming of postural movements: adaptation to altered support-surface configurations.

          We studied the extent to which automatic postural actions in standing human subjects are organized by a limited repertoire of central motor programs. Subjects stood on support surfaces of various lengths, which forced them to adopt different postural movement strategies to compensate for the same external perturbations. We assessed whether a continuum or a limited set of muscle activation patterns was used to produce different movement patterns and the extent to which movement patterns were influenced by prior experience. Exposing subjects standing on a normal support surface to brief forward and backward horizontal surface perturbations elicited relatively stereotyped patterns of leg and trunk muscle activation with 73- to 110-ms latencies. Activity began in the ankle joint muscles and then radiated in sequence to thigh and then trunk muscles on the same dorsal or ventral aspect of the body. This activation pattern exerted compensatory torques about the ankle joints, which restored equilibrium by moving the body center of mass forward or backward. This pattern has been termed the ankle strategy because it restores equilibrium by moving the body primarily around the ankle joints. To successfully maintain balance while standing on a support surface short in relation to foot length, subjects activated leg and trunk muscles at similar latencies but organized the activity differently. The trunk and thigh muscles antagonistic to those used in the ankle strategy were activated in the opposite proximal-to-distal sequence, whereas the ankle muscles were generally unresponsive. This activation pattern produced a compensatory horizontal shear force against the support surface but little, if any, ankle torque. This pattern has been termed the hip strategy, because the resulting motion is focused primarily about the hip joints. Exposing subjects to horizontal surface perturbations while standing on support surfaces intermediate in length between the shortest and longest elicited more complex postural movements and associated muscle activation patterns that resembled ankle and hip strategies combined in different temporal relations. These complex postural movements were executed with combinations of torque and horizontal shear forces and motions of ankle and hip joints. During the first 5-20 practice trials immediately following changes from one support surface length to another, response latencies were unchanged. The activation patterns, however, were complex and resembled the patterns observed during well-practiced stance on surfaces of intermediate lengths.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            CONTINGENT NEGATIVE VARIATION: AN ELECTRIC SIGN OF SENSORIMOTOR ASSOCIATION AND EXPECTANCY IN THE HUMAN BRAIN.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the prefrontal cortex in human balance control.

              Although recent studies have demonstrated cortical involvement in human balance control, there is insufficient information regarding the regions of the cerebral cortex that contribute to human balance control and their mechanism of action. Using a functional near-infrared spectroscopic system, we investigated perturbation-related cortical activation. External perturbations were provided with and without the preceding auditory warning signals 2 s before the perturbation. Statistical analysis by applying the general linear model showed significant activation in the prefrontal cortex, including the dorsolateral prefrontal cortex and frontal eye field after external perturbation, regardless of the preceding auditory warning signals. A time-line analysis revealed similar temporal profiles for prefrontal activation in 2 different conditions. Based on the contrast between the 2 conditions, we detected enhanced activation in the right posterior parietal cortex and supplementary motor area in the condition where the auditory warning signals were provided. We presumed that prefrontal involvement may be relevant to adequate allocation of visuospatial attention. Our results may facilitate the understanding of cortical mechanisms for balance control in humans and the underlying pathophysiology of falls.
                Bookmark

                Author and article information

                Journal
                J Physiol Anthropol
                J Physiol Anthropol
                Journal of Physiological Anthropology
                BioMed Central
                1880-6791
                1880-6805
                2013
                19 December 2013
                : 32
                : 1
                : 24
                Affiliations
                [1 ]Department of Human Movement and Health, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
                [2 ]Department of Rehabilitation Science, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan
                [3 ]Department of Physical Therapy, Faculty of Human Science, Hokkaido Bunkyo University, 5-196-1, Kogane-chuo, Eniwa 061-1449, Japan
                Article
                1880-6805-32-24
                10.1186/1880-6805-32-24
                3878418
                24355102
                d228fffb-9e1c-4ab7-84e3-294112df1cc5
                Copyright © 2013 Maekawa et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 September 2013
                : 9 December 2013
                Categories
                Original Article

                Anthropology
                adaptation,anticipatory postural control,contingent negative variation,floor translation,elderly subject,postural disturbance,postural muscle activation

                Comments

                Comment on this article