9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CONTENTS OF SOLUBLE, CELL-WALL-BOUND AND EXUDED PHLOROTANNINS IN THE BROWN ALGA Fucus vesiculosus, WITH IMPLICATIONS ON THEIR ECOLOGICAL FUNCTIONS

      , , ,
      Journal of Chemical Ecology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Phenolics in ecological interactions: The importance of oxidation.

          H. Appel (1993)
          The ecological activities of plant phenolics are diverse and highly variable. Although some variation is attributable to differences in concentration, structure, and evolutionary history of association with target organisms, much of it is unexplained, making it difficult to predict when and where phenolics will be active. I suggest that our understanding is limited by a failure to appreciate the importance of oxidative activation and the conditions that influence it. I summarize examples of oxidative activation of phenolics in ecological interactions, and argue that physicochemical conditions of the environment that control phenolic oxidation generate variation in ecological activity. Finally, I suggest that measurements of oxidative conditions can improve our predictions of phenolic activity and that experiments must be designed with conditions appropriate to the biochemical mode of phenolic action.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical analysis of Ginkgo biloba leaves and extracts.

            The chemical analysis and quality control of Ginkgo leaves and extracts is reviewed. Important constituents present in the medicinally used leaves are the terpene trilactones, i.e., ginkgolides A, B, C, J and bilobalide, many flavonol glycosides, biflavones, proanthocyanidins, alkylphenols, simple phenolic acids, 6-hydroxykynurenic acid, 4-O-methylpyridoxine and polyprenols. In the commercially important Ginkgo extracts some of these compound classes are no longer present. Many publications deal with the analysis of the unique terpene trilactones. They can be extracted with aqueous acetone or aqueous methanol but also supercritical fluid extraction is possible. Still somewhat problematic is their sample clean-up. Various procedures, not all of them validated, employing partitioning or SPE have been proposed. Some further development in this area can be foreseen. Separation and detection can be routinely carried out by HPLC with RI, ELSD or MS, or with GC-FID after silylation. TLC is another possibility. No quantitative procedure for flavonol glycosides has been published so far due their difficult separation and commercial unavailability. Fingerprint analysis by gradient RP-HPLC is possible. After acidic hydrolysis to the aglycones quercetin, kaempferol and isorhamnetin and separation by HPLC, quantitation is straightforward and yields by recalculation an estimation of the original total flavonol glycoside content. For biflavones, simple phenols, 6-hydroxykynurenic acid, 4-O-methylpyridoxine and polyprenols analytical procedures have been published but not all assays are yet ideal. Lately a there is a lot of interest in the analysis of the undesired alkylphenols and a few validated procedures have been published. The analysis of Ginkgo proanthocyanidins is still in its infancy and no reliable assays exist.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phlorotannin-protein interactions.

              Tannins are one of the most broadly distributed types of plant secondary compounds, and have been the focal point for many studies of plant/herbivore interactions. Tannins interact strongly with proteins, so that the fate and effects of ingested tannins are in part dependent on the mode of interaction of the tannin with dietary and endogenous proteins in an herbivore's gut. We investigated the factors affecting the precipitation of proteins by phlorotannins from three species of marine brown algae:Carpophyllum maschalocarpum, Ecklonia radiata, andLobophora variegata. Phlorotannins were precipitated by proteins in a pH-dependent and concentration-dependent fashion. Precipitation also varied as a function of the presence of reducing agent, the type of phlorotannin or protein used, and the presence of organic solvents such as hydrogen bond inhibitors. Of particular significance was the ability of some phlorotannins to oxidize and form covalent bonds with some proteins. In contrast, under similar experimental conditions three types of terrestrial tannins (procyanidins, profisetinidins, and gallotannins) apparently did not form covalent complexes with proteins. Our results suggest several ways in which the biological activity of phlorotannins may vary as a function of the properties of the gut environment of marine herbivores. Moreover, we identify specific structural characteristics of phlorotannins which affect their tendency to oxidize, and thus, their potential effects on marine herbivores.
                Bookmark

                Author and article information

                Journal
                Journal of Chemical Ecology
                J Chem Ecol
                Springer Nature
                0098-0331
                1573-1561
                January 2005
                January 2005
                : 31
                : 1
                : 195-212
                Article
                10.1007/s10886-005-0984-2
                d22e076b-563c-4a0b-bf13-9b484d40c9b4
                © 2005
                History

                Comments

                Comment on this article