20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comparative study of the influence of two types of PHEMA stents on the differentiation of ASCs to myocardial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present study, subcutaneous fat was obtained from adult women that had undergone conventional liposuction surgery. A comparative study was performed to investigate the effect of transparent and white poly-β-hydroxyethyl methacrylate (PHEMA) stents, which have different surface and cross-sectional morphological characteristics, on the differentiation of adipose-derived stem cells (ASCs) into myocardial cells. The cell counting kit-8 assay revealed that cell growth increased at varying rates among the different treatment groups. The absorbance of the experimental transparent PHEMA treated group increased in a time-dependent manner with the duration of incubation. The highest levels of proliferation were observed in the transparent PHEMA group. In addition, the transparent PHEMA treated group exhibited the strongest cell adhesion ability, which was significantly different to that of the white PHEMA group (P<0.01 and P<0.05 for Matrigel and fibronectin assay, respectively). Comparisons between the two stent materials with the inducer control group revealed statistically significant differences in the rate of ASC differentiation (P<0.05). The level of differentiation was the greatest in the transparent PHEMA group, and was significantly different to the white PHEMA group (P<0.05) and the blank control group (P<0.01). The results suggest that the inducers 5-aza-2-deoxycytidin and laminin, and material microstructure stents effectively promote the proliferation, growth and adhesion of ASCs. However, the transparent material microstructure may be a more suitable candidate for ASC-associated injections. The present study provides further evidence that a PHEMA stent structure, comprised of a high number of matrixes and a low water content, induces a high level of ASC differentiation to myocardial cells.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydrogels for tissue engineering.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carbon nanotube applications for tissue engineering.

            As the field of tissue engineering advances, new tools for better monitoring and evaluating of engineered tissues along with new biomaterials to direct tissue growth are needed. Carbon nanotubes may be an important tissue engineering material for improved tracking of cells, sensing of microenvironments, delivering of transfection agents, and scaffolding for incorporating with the host's body. Using carbon nanotubes for optical, magnetic resonance and radiotracer contrast agents would provide better means of evaluating tissue formation. In addition, monitoring and altering intra and intercellular processes would be useful for design of better engineered tissues. Carbon nanotubes can also be incorporated into scaffolds providing structural reinforcement as well as imparting novel properties such as electrical conductivity into the scaffolds may aid in directing cell growth. Potential cytotoxic effects associated with carbon nanotubes may be mitigated by chemically functionalizing the surface. Overall, carbon nanotubes may play an integral role as unique biomaterial for creating and monitoring engineered tissue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrical stimulation systems for cardiac tissue engineering.

              We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                January 2017
                01 June 2017
                01 June 2017
                : 16
                : 1
                : 507-514
                Affiliations
                [1 ]Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
                [2 ]Department of Ultrasonography, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
                [3 ]Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
                Author notes
                Correspondence to: Dr Shengli Yin, Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: yshengl03@ 123456126.com
                Article
                mmr-16-01-0507
                10.3892/mmr.2017.6680
                5482065
                28586071
                d22e3dc9-f40a-4c13-a3aa-ac9e5914194c
                Copyright: © Lao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 02 January 2016
                : 07 February 2017
                Categories
                Articles

                adipose-derived stem cells,microporous poly-β-hydroxyethyl methacrylate,myocardial cells,tissue engineering

                Comments

                Comment on this article