18
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Treating Leukemia in the Time of COVID-19

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The coronavirus disease 2019 (COVID-19) pandemic poses several challenges to the management of patients with leukemia. The biology of each leukemia and its corresponding treatment with conventional intensive chemotherapy, with or without targeted therapies (venetoclax, FLT3 inhibitors, IDH1/2 inhibitors, Bruton's tyrosine kinase inhibitors), introduce additional layers of complexity during COVID-19 high-risk periods. The knowledge about COVID-19 is accumulating rapidly. An important distinction is the prevalence of “exposure” versus “clinical infectivity,” which determine the risk versus benefit of modifying potentially highly curative therapies in leukemia. At present, the rate of clinical infection is <1–2% worldwide. With a mortality rate of 1–5% in CO­VID-19 patients in the general population and potentially of >30% in patients with cancer, careful consideration should be given to the risk of COVID-19 in leukemia. Instead of reducing patient access to specialized cancer centers and modifying therapies to ones with unproven curative benefit, there is more rationale for less intensive, yet effective therapies that may require fewer clinic visits or hospitalizations. Here, we offer recommendations on the optimization of leukemia management during high-risk COVID-19 periods.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China

          China and the rest of the world are experiencing an outbreak of a novel betacoronavirus known as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). 1 By Feb 12, 2020, the rapid spread of the virus had caused 42 747 cases and 1017 deaths in China and cases have been reported in 25 countries, including the USA, Japan, and Spain. WHO has declared 2019 novel coronavirus disease (COVID-19), caused by SARS-CoV-2, a public health emergency of international concern. In contrast to severe acute respiratory system coronavirus and Middle East respiratory syndrome coronavirus, more deaths from COVID-19 have been caused by multiple organ dysfunction syndrome rather than respiratory failure, 2 which might be attributable to the widespread distribution of angiotensin converting enzyme 2—the functional receptor for SARS-CoV-2—in multiple organs.3, 4 Patients with cancer are more susceptible to infection than individuals without cancer because of their systemic immunosuppressive state caused by the malignancy and anticancer treatments, such as chemotherapy or surgery.5, 6, 7, 8 Therefore, these patients might be at increased risk of COVID-19 and have a poorer prognosis. On behalf of the National Clinical Research Center for Respiratory Disease, we worked together with the National Health Commission of the People's Republic of China to establish a prospective cohort to monitor COVID-19 cases throughout China. As of the data cutoff on Jan 31, 2020, we have collected and analysed 2007 cases from 575 hospitals (appendix pp 4–9 for a full list) in 31 provincial administrative regions. All cases were diagnosed with laboratory-confirmed COVID-19 acute respiratory disease and were admitted to hospital. We excluded 417 cases because of insufficient records of previous disease history. 18 (1%; 95% CI 0·61–1·65) of 1590 COVID-19 cases had a history of cancer, which seems to be higher than the incidence of cancer in the overall Chinese population (285·83 [0·29%] per 100 000 people, according to 2015 cancer epidemiology statistics 9 ). Detailed information about the 18 patients with cancer with COVID-19 is summarised in the appendix (p 1). Lung cancer was the most frequent type (five [28%] of 18 patients). Four (25%) of 16 patients (two of the 18 patients had unknown treatment status) with cancer with COVID-19 had received chemotherapy or surgery within the past month, and the other 12 (25%) patients were cancer survivors in routine follow-up after primary resection. Compared with patients without cancer, patients with cancer were older (mean age 63·1 years [SD 12·1] vs 48·7 years [16·2]), more likely to have a history of smoking (four [22%] of 18 patients vs 107 [7%] of 1572 patients), had more polypnea (eight [47%] of 17 patients vs 323 [23%] of 1377 patients; some data were missing on polypnea), and more severe baseline CT manifestation (17 [94%] of 18 patients vs 1113 [71%] of 1572 patients), but had no significant differences in sex, other baseline symptoms, other comorbidities, or baseline severity of x-ray (appendix p 2). Most importantly, patients with cancer were observed to have a higher risk of severe events (a composite endpoint defined as the percentage of patients being admitted to the intensive care unit requiring invasive ventilation, or death) compared with patients without cancer (seven [39%] of 18 patients vs 124 [8%] of 1572 patients; Fisher's exact p=0·0003). We observed similar results when the severe events were defined both by the above objective events and physician evaluation (nine [50%] of 18 patients vs 245 [16%] of 1572 patients; Fisher's exact p=0·0008). Moreover, patients who underwent chemotherapy or surgery in the past month had a numerically higher risk (three [75%] of four patients) of clinically severe events than did those not receiving chemotherapy or surgery (six [43%] of 14 patients; figure ). These odds were further confirmed by logistic regression (odds ratio [OR] 5·34, 95% CI 1·80–16·18; p=0·0026) after adjusting for other risk factors, including age, smoking history, and other comorbidities. Cancer history represented the highest risk for severe events (appendix p 3). Among patients with cancer, older age was the only risk factor for severe events (OR 1·43, 95% CI 0·97–2·12; p=0·072). Patients with lung cancer did not have a higher probability of severe events compared with patients with other cancer types (one [20%] of five patients with lung cancer vs eight [62%] of 13 patients with other types of cancer; p=0·294). Additionally, we used a Cox regression model to evaluate the time-dependent hazards of developing severe events, and found that patients with cancer deteriorated more rapidly than those without cancer (median time to severe events 13 days [IQR 6–15] vs 43 days [20–not reached]; p<0·0001; hazard ratio 3·56, 95% CI 1·65–7·69, after adjusting for age; figure). Figure Severe events in patients without cancer, cancer survivors, and patients with cancer (A) and risks of developing severe events for patients with cancer and patients without cancer (B) ICU=intensive care unit. In this study, we analysed the risk for severe COVID-19 in patients with cancer for the first time, to our knowledge; only by nationwide analysis can we follow up patients with rare but important comorbidities, such as cancer. We found that patients with cancer might have a higher risk of COVID-19 than individuals without cancer. Additionally, we showed that patients with cancer had poorer outcomes from COVID-19, providing a timely reminder to physicians that more intensive attention should be paid to patients with cancer, in case of rapid deterioration. Therefore, we propose three major strategies for patients with cancer in this COVID-19 crisis, and in future attacks of severe infectious diseases. First, an intentional postponing of adjuvant chemotherapy or elective surgery for stable cancer should be considered in endemic areas. Second, stronger personal protection provisions should be made for patients with cancer or cancer survivors. Third, more intensive surveillance or treatment should be considered when patients with cancer are infected with SARS-CoV-2, especially in older patients or those with other comorbidities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury

            The 2019 novel coronavirus (2019-nCoV) outbreak is a major challenge for clinicians. The clinical course of patients remains to be fully characterised, little data are available that describe the disease pathogenesis, and no pharmacological therapies of proven efficacy yet exist. Corticosteroids were widely used during the outbreaks of severe acute respiratory syndrome (SARS)-CoV 1 and Middle East respiratory syndrome (MERS)-CoV, 2 and are being used in patients with 2019-nCoV in addition to other therapeutics. 3 However, current interim guidance from WHO on clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected (released Jan 28, 2020) advises against the use of corticosteroids unless indicated for another reason. 4 Understanding the evidence for harm or benefit from corticosteroids in 2019-nCoV is of immediate clinical importance. Here we discuss the clinical outcomes of corticosteroid use in coronavirus and similar outbreaks (table ). Table Summary of clinical evidence to date Outcomes of corticosteroid therapy * Comment MERS-CoV Delayed clearance of viral RNA from respiratory tract 2 Adjusted hazard ratio 0·4 (95% CI 0·2–0·7) SARS-CoV Delayed clearance of viral RNA from blood 5 Significant difference but effect size not quantified SARS-CoV Complication: psychosis 6 Associated with higher cumulative dose, 10 975 mg vs 6780 mg hydrocortisone equivalent SARS-CoV Complication: diabetes 7 33 (35%) of 95 patients treated with corticosteroid developed corticosteroid-induced diabetes SARS-CoV Complication: avascular necrosis in survivors 8 Among 40 patients who survived after corticosteroid treatment, 12 (30%) had avascular necrosis and 30 (75%) had osteoporosis Influenza Increased mortality 9 Risk ratio for mortality 1·75 (95% CI 1·3–2·4) in a meta-analysis of 6548 patients from ten studies RSV No clinical benefit in children10, 11 No effect in largest randomised controlled trial of 600 children, of whom 305 (51%) had been treated with corticosteroids CoV=coronavirus. MERS=Middle East respiratory syndrome. RSV=respiratory syncytial virus. SARS=severe acute respiratory syndrome. * Hydrocortisone, methylprednisolone, dexamethasone, and prednisolone. Acute lung injury and acute respiratory distress syndrome are partly caused by host immune responses. Corticosteroids suppress lung inflammation but also inhibit immune responses and pathogen clearance. In SARS-CoV infection, as with influenza, systemic inflammation is associated with adverse outcomes. 12 In SARS, inflammation persists after viral clearance.13, 14 Pulmonary histology in both SARS and MERS infections reveals inflammation and diffuse alveolar damage, 15 with one report suggesting haemophagocytosis. 16 Theoretically, corticosteroid treatment could have a role to suppress lung inflammation. In a retrospective observational study reporting on 309 adults who were critically ill with MERS, 2 almost half of patients (151 [49%]) were given corticosteroids (median hydrocortisone equivalent dose [ie, methylprednisolone 1:5, dexamethasone 1:25, prednisolone 1:4] of 300 mg/day). Patients who were given corticosteroids were more likely to require mechanical ventilation, vasopressors, and renal replacement therapy. After statistical adjustment for immortal time and indication biases, the authors concluded that administration of corticosteroids was not associated with a difference in 90-day mortality (adjusted odds ratio 0·8, 95% CI 0·5–1·1; p=0·12) but was associated with delayed clearance of viral RNA from respiratory tract secretions (adjusted hazard ratio 0·4, 95% CI 0·2–0·7; p=0·0005). However, these effect estimates have a high risk of error due to the probable presence of unmeasured confounders. In a meta-analysis of corticosteroid use in patients with SARS, only four studies provided conclusive data, all indicating harm. 1 The first was a case-control study of SARS patients with (n=15) and without (n=30) SARS-related psychosis; all were given corticosteroid treatment, but those who developed psychosis were given a higher cumulative dose than those who did not (10 975 mg hydrocortisone equivalent vs 6780 mg; p=0·017). 6 The second was a randomised controlled trial of 16 patients with SARS who were not critically ill; the nine patients who were given hydrocortisone (mean 4·8 days [95% CI 4·1–5·5] since fever onset) had greater viraemia in the second and third weeks after infection than those who were given 0·9% saline control. 5 The remaining two studies reported diabetes and avascular necrosis as complications associated with corticosteroid treatment.7, 8 A 2019 systematic review and meta-analysis 9 identified ten observational studies in influenza, with a total of 6548 patients. The investigators found increased mortality in patients who were given corticosteroids (risk ratio [RR] 1·75, 95% CI 1·3–2·4; p=0·0002). Among other outcomes, length of stay in an intensive care unit was increased (mean difference 2·1, 95% CI 1·2–3·1; p<0·0001), as was the rate of secondary bacterial or fungal infection (RR 2·0, 95% CI 1·0–3·8; p=0·04). Corticosteroids have been investigated for respiratory syncytial virus (RSV) in clinical trials in children, with no conclusive evidence of benefit and are therefore not recommended. 10 An observational study of 50 adults with RSV infection, in which 33 (66%) were given corticosteroids, suggested impaired antibody responses at 28 days in those given corticosteroids. 17 Life-threatening acute respiratory distress syndrome occurs in 2019-nCoV infection. 18 However, generalising evidence from acute respiratory distress syndrome studies to viral lung injury is problematic because these trials typically include a majority of patients with acute respiratory distress syndrome of non-pulmonary or sterile cause. A review of treatments for acute respiratory distress syndrome of any cause, based on six studies with a total of 574 patients, 19 concluded that insufficient evidence exists to recommend corticosteroid treatment. 20 Septic shock has been reported in seven (5%) of 140 patients with 2019-nCoV included in published reports as of Jan 29, 2020.3, 18 Corticosteroids are widely used in septic shock despite uncertainty over their efficacy. Most patients in septic shock trials have bacterial infection, leading to vasoplegic shock and myocardial insufficiency.21, 22 In this group, there is potential that net benefit might be derived from steroid treatment in severe shock.21, 22 However, shock in severe hypoxaemic respiratory failure is often a consequence of increased intrathoracic pressure (during invasive ventilation) impeding cardiac filling, and not vasoplegia. 23 In this context, steroid treatment is unlikely to provide a benefit. No clinical data exist to indicate that net benefit is derived from corticosteroids in the treatment of respiratory infection due to RSV, influenza, SARS-CoV, or MERS-CoV. The available observational data suggest increased mortality and secondary infection rates in influenza, impaired clearance of SARS-CoV and MERS-CoV, and complications of corticosteroid therapy in survivors. If it is present, the effect of steroids on mortality in those with septic shock is small, and is unlikely to be generalisable to shock in the context of severe respiratory failure due to 2019-nCoV. Overall, no unique reason exists to expect that patients with 2019-nCoV infection will benefit from corticosteroids, and they might be more likely to be harmed with such treatment. We conclude that corticosteroid treatment should not be used for the treatment of 2019-nCoV-induced lung injury or shock outside of a clinical trial.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revised international prognostic scoring system for myelodysplastic syndromes.

              The International Prognostic Scoring System (IPSS) is an important standard for assessing prognosis of primary untreated adult patients with myelodysplastic syndromes (MDS). To refine the IPSS, MDS patient databases from international institutions were coalesced to assemble a much larger combined database (Revised-IPSS [IPSS-R], n = 7012, IPSS, n = 816) for analysis. Multiple statistically weighted clinical features were used to generate a prognostic categorization model. Bone marrow cytogenetics, marrow blast percentage, and cytopenias remained the basis of the new system. Novel components of the current analysis included: 5 rather than 3 cytogenetic prognostic subgroups with specific and new classifications of a number of less common cytogenetic subsets, splitting the low marrow blast percentage value, and depth of cytopenias. This model defined 5 rather than the 4 major prognostic categories that are present in the IPSS. Patient age, performance status, serum ferritin, and lactate dehydrogenase were significant additive features for survival but not for acute myeloid leukemia transformation. This system comprehensively integrated the numerous known clinical features into a method analyzing MDS patient prognosis more precisely than the initial IPSS. As such, this IPSS-R should prove beneficial for predicting the clinical outcomes of untreated MDS patients and aiding design and analysis of clinical trials in this disease.
                Bookmark

                Author and article information

                Journal
                Acta Haematol
                Acta Haematol
                AHA
                Acta Haematologica
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH-4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.com )
                0001-5792
                1421-9662
                11 May 2020
                : 1-3
                Affiliations
                [1] aDivision of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                [2] bDepartment of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                [3] cDepartment of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                Author notes
                *Elias Jabbour, Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Box 428, Houston, TX 77030 (USA), ejabbour@ 123456mdanderson.org

                S. Paul and C.R. Rausch contributed equally to this work.

                Article
                aha-0001
                10.1159/000508199
                7270066
                32392559
                d2310503-4dae-4ed4-b015-7943df4fa69a
                Copyright © 2020 by S. Karger AG, Basel

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 24 April 2020
                : 26 April 2020
                Page count
                Tables: 3, References: 71, Pages: 3
                Categories
                Review

                acute leukemia,chronic leukemia,myelodysplastic syndrome,covid-19

                Comments

                Comment on this article