+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Emerging Role of Macrophages in Chronic Cholangiopathies Featuring Biliary Fibrosis: An Attractive Therapeutic Target for Orphan Diseases


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Cholangiopathies are a heterogeneous group of chronic liver diseases caused by different types of injury targeting the biliary epithelium, such as genetic defects and immune-mediated attacks. Notably, most cholangiopathies are orphan, thereby representing one of the major gaps in knowledge of the modern hepatology. A typical hallmark of disease progression in cholangiopathies is portal scarring, and thus development of effective therapeutic approaches would aim to hinder cellular and molecular mechanisms underpinning biliary fibrogenesis. Recent lines of evidence indicate that macrophages, rather than more conventional cell effectors of liver fibrosis such as hepatic stellate cells and portal fibroblasts, are actively involved in the earliest stages of biliary fibrogenesis by exchanging a multitude of cues with cholangiocytes, which promote their recruitment from the circulating compartment owing to a senescent or an immature epithelial phenotype. Two cholangiopathies, namely primary sclerosing cholangitis and congenital hepatic fibrosis, are paradigmatic of this mechanism. This review summarizes current understandings of the cytokine and extracellular vesicles-mediated communications between cholangiocytes and macrophages typically occurring in the two cholangiopathies to unveil potential novel targets for the treatment of biliary fibrosis.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage polarization in bacterial infections.

          Converging studies have shown that M1 and M2 macrophages are functionally polarized in response to microorganisms and host mediators. Gene expression profiling of macrophages reveals that various Gram-negative and Gram-positive bacteria induce the transcriptional activity of a "common host response," which includes genes belonging to the M1 program. However, excessive or prolonged M1 polarization can lead to tissue injury and contribute to pathogenesis. The so-called M2 macrophages play a critical role in the resolution of inflammation by producing anti-inflammatory mediators. These M2 cells cover a continuum of cells with different phenotypic and functional properties. In addition, some bacterial pathogens induce specific M2 programs in macrophages. In this review, we discuss the relevance of macrophage polarization in three domains of infectious diseases: resistance to infection, infectious pathogenesis, and chronic evolution of infectious diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Polycystic kidney disease.

            A number of inherited disorders result in renal cyst development. The most common form, autosomal dominant polycystic kidney disease (ADPKD), is a disorder most often diagnosed in adults and caused by mutation in PKD1 or PKD2. The PKD1 protein, polycystin-1, is a large receptor-like protein, whereas polycystin-2 is a transient receptor potential channel. The polycystin complex localizes to primary cilia and may act as a mechanosensor essential for maintaining the differentiated state of epithelia lining tubules in the kidney and biliary tract. Elucidation of defective cellular processes has highlighted potential therapies, some of which are now being tested in clinical trials. ARPKD is the neonatal form of PKD and is associated with enlarged kidneys and biliary dysgenesis. The disease phenotype is highly variable, ranging from neonatal death to later presentation with minimal kidney disease. ARPKD is caused by mutation in PKHD1, and two truncating mutations are associated with neonatal lethality. The ARPKD protein, fibrocystin, is localized to cilia/basal body and complexes with polycystin-2. Rare, syndromic forms of PKD also include defects of the eye, central nervous system, digits, and/or neural tube and highlight the role of cilia and pathways such as Wnt and Hh in their pathogenesis.
              • Record: found
              • Abstract: found
              • Article: not found

              RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages.

              Abstract High-mobility group box chromosomal protein 1 (HMGB1) is a protein with both intranuclear functions and extracellular cytokine-like effects. In this report, we study possible candidate receptors for HMGB1 on macrophages (Mphi) and define pathways activated by HMGB1 binding. Bone marrow Mphi were prepared from Dark Agouti (DA) rats and stimulated in vitro with HMGB1. The kinetics of tumour necrosis factor (TNF) production, NO production, activation of p38 mitogen-activated protein kinase (MAPK), p44/42 MAPK- and SAPK/JNK-signalling pathways, nuclear translocation of nuclear factor kappa B (NF-kappaB) and HMGB1-induced upregulation of major histocompatibility complex (MHC) class II and CD86 were analysed. Mphi from interleukin (IL)-1 receptor type I-/-, Toll-like receptor 2 (TLR2-/-) and RAGE-/- mice were used to investigate the role of these receptors in HMGB1 signalling. HMGB1 induced TNF and NO production by Mphi, phosphorylation of all investigated MAP kinase pathways and NF-kappaB translocation, and expression of MHC class II was increased. Mphi from RAGE-/- mice produced significantly lower amounts of TNF, IL-1beta and IL-6, while IL-1RI-/- and TLR2-/- Mphi produced cytokine levels comparable with wildtype controls in response to HMGB1 stimulation. We conclude that HMGB1 has the potential to induce a proinflammatory phenotype in Mphi, with RAGE as the major activation-inducing receptor.

                Author and article information

                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                21 April 2020
                : 7
                1Department of Molecular Medicine, University of Padua , Padua, Italy
                2Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic , Rochester, NY, United States
                3Liver Center, Department of Medicine, Yale University , New Haven, CT, United States
                Author notes

                Edited by: Gianfranco Danilo Alpini, Indiana University, United States

                Reviewed by: Keisaku Sato, Indiana University, United States; Chaodong Wu, Texas A & M University, United States

                *Correspondence: Luca Fabris luca.fabris@ 123456unipd.it

                This article was submitted to Gastroenterology, a section of the journal Frontiers in Medicine

                Copyright © 2020 Cadamuro, Girardi, Gores, Strazzabosco and Fabris.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 82, Pages: 10, Words: 7637
                Funded by: PSC Partners Seeking a Cure 10.13039/100008538
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: RO1DK096096I
                Funded by: Università degli Studi di Padova 10.13039/501100003500


                Comment on this article