11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patterns of Immune Infiltration and the Key Immune-Related Genes in Acute Type A Aortic Dissection in Bioinformatics Analyses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Immune-inflammatory mechanisms contribute greatly to the complex process leading to type A aortic dissection (TAAD). This study aims to explore immune infiltration and key immune-related genes in acute TAAD.

          Methods

          ImmuCellAI algorithm was applied to analyze patterns of immune infiltration in TAAD samples and normal aortic vessel samples in the GSE153434 dataset. Differentially expressed genes (DEGs) were screened. Immune-related genes were obtained from overlapping DEGs of GSE153434 and immune genes of the ImmPort database. The hub genes were obtained based on the protein–protein interaction (PPI) network. The hub genes in TAAD were validated in the GSE52093 dataset. The correlation between the key immune-related genes and infiltrating immune cells was further analyzed.

          Results

          In the study, the abundance of macrophages, neutrophils, natural killer T cells (NKT cells), natural regulatory T cells (nTreg), T-helper 17 cells (Th17 cells) and monocytes was increased in TAAD samples, whereas that of dendritic cells (DCs), CD4 T cells, central memory T cells (Tcm), mucosa associated invariant T cells (MAIT cells) and B cells was decreased. Interleukin 6 (IL-6), C-C motif chemokine ligand 2 (CCL2) and hepatocyte growth factor (HGF) were identified and validated in the GSE52093 dataset as the key immune-related genes. Furthermore, IL-6, CCL2 and HGF were correlated with different types of immune cells.

          Conclusion

          In conclusion, several immune cells such as macrophages, neutrophils, NKT cells, and nTreg may be involved in the development of TAAD. IL-6, CCL2 and HGF were identified and validated as the key immune-related genes of TAAD via bioinformatics analyses. The key immune cells and immune-related genes have the potential to be developed as targets of prevention and immunotherapy for patients with TAAD.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          limma powers differential expression analyses for RNA-sequencing and microarray studies

          limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            cytoHubba: identifying hub objects and sub-networks from complex interactome

            Background Network is a useful way for presenting many types of biological data including protein-protein interactions, gene regulations, cellular pathways, and signal transductions. We can measure nodes by their network features to infer their importance in the network, and it can help us identify central elements of biological networks. Results We introduce a novel Cytoscape plugin cytoHubba for ranking nodes in a network by their network features. CytoHubba provides 11 topological analysis methods including Degree, Edge Percolated Component, Maximum Neighborhood Component, Density of Maximum Neighborhood Component, Maximal Clique Centrality and six centralities (Bottleneck, EcCentricity, Closeness, Radiality, Betweenness, and Stress) based on shortest paths. Among the eleven methods, the new proposed method, MCC, has a better performance on the precision of predicting essential proteins from the yeast PPI network. Conclusions CytoHubba provide a user-friendly interface to explore important nodes in biological networks. It computes all eleven methods in one stop shopping way. Besides, researchers are able to combine cytoHubba with and other plugins into a novel analysis scheme. The network and sub-networks caught by this topological analysis strategy will lead to new insights on essential regulatory networks and protein drug targets for experimental biologists. According to cytoscape plugin download statistics, the accumulated number of cytoHubba is around 6,700 times since 2010.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ImmuCellAI: A Unique Method for Comprehensive T‐Cell Subsets Abundance Prediction and its Application in Cancer Immunotherapy

              Abstract The distribution and abundance of immune cells, particularly T‐cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets with specific function and current methods are limited in estimating them, thus, a method for predicting comprehensive T‐cell subsets is urgently needed in cancer immunology research. Here, Immune Cell Abundance Identifier (ImmuCellAI), a gene set signature‐based method, is introduced for precisely estimating the abundance of 24 immune cell types including 18 T‐cell subsets, from gene expression data. Performance evaluation on both the sequencing data with flow cytometry results and public expression data indicate that ImmuCellAI can estimate the abundance of immune cells with superior accuracy to other methods especially on many T‐cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals that the abundance of dendritic cells, cytotoxic T, and gamma delta T cells is significantly higher both in comparisons of on‐treatment versus pre‐treatment and responders versus non‐responders. Meanwhile, an ImmuCellAI result‐based model is built for predicting the immunotherapy response with high accuracy (area under curve 0.80–0.91). These results demonstrate the powerful and unique function of ImmuCellAI in tumor immune infiltration estimation and immunotherapy response prediction.
                Bookmark

                Author and article information

                Journal
                Int J Gen Med
                Int J Gen Med
                ijgm
                ijgm
                International Journal of General Medicine
                Dove
                1178-7074
                25 June 2021
                2021
                : 14
                : 2857-2869
                Affiliations
                [1 ]Department of Anesthesiology, The First Hospital of China Medical University , Shenyang, Liaoning Province, People’s Republic of China
                Author notes
                Correspondence: Bing Tang No. 155 Nangjing North Street, Shenyang, Liaoning Province, People’s Republic of ChinaTel +86 24 83283100 Email tangbing527@126.com
                Article
                317405
                10.2147/IJGM.S317405
                8242140
                34211294
                d249ba1a-c9a4-4767-8bbf-017dd23481ac
                © 2021 Chen et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 25 April 2021
                : 14 June 2021
                Page count
                Figures: 8, Tables: 5, References: 55, Pages: 13
                Funding
                Funded by: no funding;
                There is no funding to report.
                Categories
                Original Research

                Medicine
                acute type a aortic dissection,immune infiltration,immucellai,bioinformatics
                Medicine
                acute type a aortic dissection, immune infiltration, immucellai, bioinformatics

                Comments

                Comment on this article